Advanced settings

Unplug all CV inputs and **hold the TAP (reset) button** for a second to adjust Grids' settings. Refer to the diagram on the next pages for a list of all available settings. The 3 LEDs indicate the value of the setting being modified. Hold the TAP (reset) button again for a second when you are done.

Online manual and help

The full manual can be found online at mutable-instruments.net/modules/grids/manual

For help and discussions, head to mutable-instruments.net/forum/

Please refer to the online manual for detailed information regarding compliance with EMC directives

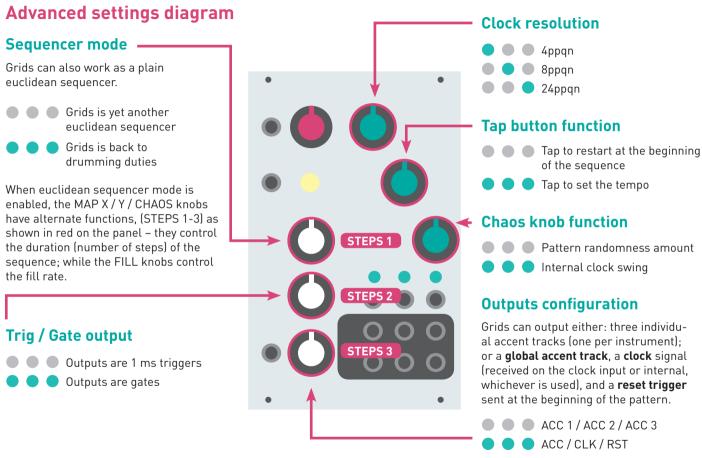
Outputs are 1 ms triggers Outputs are gates

Trig / Gate output

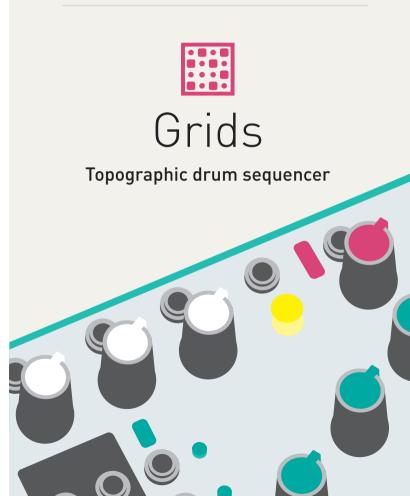
Sequencer mode -

euclidean sequencer.

the fill rate.


Grids can also work as a plain

Grids is back to


Grids is yet another

drumming duties

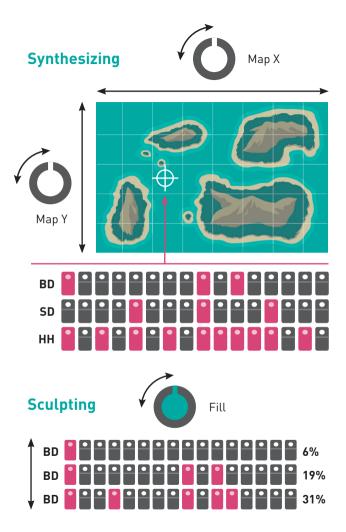
euclidean sequencer

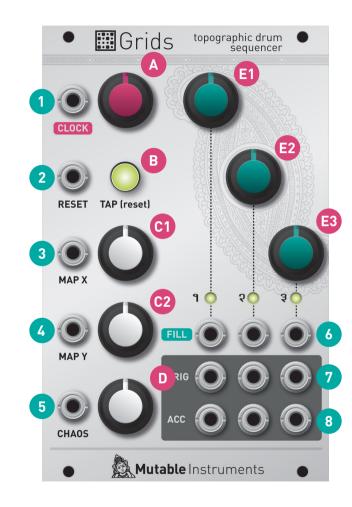
Installation

Grids requires a **-12V / +12V power supply** (2x5 pin connector). The ribbon cable connector must be aligned so that the red stripe of the ribbon cable (-12V) is on the same side of the module's power header as the "Red stripe" marking on the board.

The power consumption is as follows: -12V: 1mA; +12V: 25mA

Concept


Grids is a 3-channel, algorithmic, rhythmic pattern generator based on data and models extracted from actual drum loops. Two steps are involved in the generation of the drum patterns:


Step 1: Synthesizing a pattern from the drum map...

A collection of drum loops has been spatially organized and compressed into a 2-dimensional map. Using interpolation techniques, any pair of X/Y coordinates can be translated into a rhythm, with smooth morphing from one rhythm into the other.

Step 2: ... and sculpting it

Once a rhythmic skeleton is read from the map, variations can be generated by controlling the note density of each of the three channels - gradually morphing the pattern from a sparse backbone to a frantic pattern.

Front panel

Controls

A. Tempo, from 40 to 240 BPM. When turned fully counter-clockwise, the internal clock stops and the tempo is controlled by clock pulses received on the CLOCK input (1).

B. Tap to set the tempo. Tap just once to revert to the tempo set by A.

C1, C2. Map X and Y coordinates.

D. Pattern **humanization** amount. Note that this knob can be reassigned to control the swing amount of the internal clock too.

E1, E2, E3. Note **density/fill** rate for each of the 3 sequencer channels.

Inputs and Outputs

- 1. External **clock** input.
- 2. Pattern **reset** input.

3. 4. 5. CV inputs controlling respectively the map X/Y and **humanization** (or **swing**) parameters.

- 6. CV inputs controlling the **density/fill** rate parameters.
- 7. 8. Three trigger outputs and three accent outputs.