Read This First: Important Safety Instructions

PROTEUS FX

OPERATION MANUAL

© 1994 E-MU SYSTEMS, INC.

ALL RIGHTS RESERVED

• FI433 REV. B

MANUAL - RILEY SMITH

IMPORTANT NOTICE:

IN ORDER TO OBTAIN WARRANTY SERVICE ON YOUR PROTEUS FX UNIT, THE SERIAL NUMBER STICKER MUST BE INTACT AND YOU MUST HAVE A SALES RECEIPT OR OTHER PROOF OF PURCHASE. IF THERE IS NO SERIAL NUMBER STICKER ON PROTEUS FX, PLEASE CONTACT E-MU SYSTEMS AT ONCE.

THIS PRODUCT IS COVERED UNDER ONE OR MORE OF THE FOLLOWING U. S. PATENTS: 3,969,682; 3,986,423; 4,404,529; 4,506,579; 4,699,038; 4,987,600; 5,013,105; 5,072,645; 5,111,727 AND FOREIGN PATENTS AND/OR PENDING PATENTS.PROTEUS FX IS A REGISTERED TRADEMARK OF E-MU SYSTEMS, INC.

E-MU WORLD HEADQUARTERS E-MU SYSTEMS, INC. U.S.A. P.O. BOX 660015 SCOTTS VALLEY, CA USA 95067-0015 TELEPHONE: 408-438-1921 FAX: 408-438-8612

EUROPE, AFRICA, MIDDLE EAST E-MU SYSTEMS, LTD. SUITE 6, ADAM FERGUSON HOUSE ESKMILLS INDUSTRIAL PARK MUSSELBURGH, EAST LOTHIAN SCOTLAND, EH21 7PQ TELEPHONE: 44-31-653-6556 FAX: 44-31-665-0473

Read This First: Important Safety Instructions

Use in countries other than the U.S.A. may require the use of a different line cord or attachment plug, or both. To reduce the risk of fire or electric shock, refer servicing to qualified service personnel. To reduce risk of fire or electric shock do not expose this product to rain or moisture.

DANGER

Improper connection of equipment can result in the risk of electric shock. Check with a qualified electrician or service personnel if you are in doubt as to whether the product is properly grounded. Do not modify the plug provided with this product — if it will not fit the outlet, have a proper outlet installed by a qualified technician.

CAUTION

If the Proteus FX (model number 9026), is rack mounted, a standard 19-inch open frame rack must be used.

USER-MAINTENANCE INSTRUCTIONS

- 1. Proteus FX should be kept clean and dust free. Periodically wipe the unit with a clean, lint free cloth. Do not use solvents or cleaners.
- 2. There are no user lubrication or adjustment requirements.
- 3. Refer all other servicing to qualified service personnel.

INSTRUCTIONS PERTAINING TO A RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS

WARNING; When using electric products, basic precautions should always be followed, including the following:

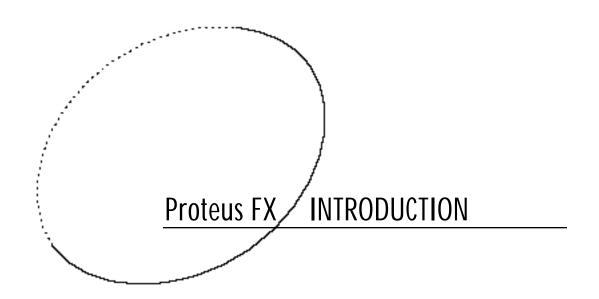
- 1. Read all instructions before using Proteus FX.
- 2. To reduce the risk of injury, close supervision is necessary when Proteus FX is used near children.
- 3. Do not use Proteus FX near water for example near a bathtub, washbowl, kitchen sink, in a wet basement, on a wet bar, or near or in a swimming pool.
- 4. Proteus FX should be situated so that its location or position does not interfere with its proper ventilation.
- 5. Proteus FX should be located away from heat sources such as radiators, heat registers, fireplaces, stoves, or ovens.
- 6. Proteus FX should only be connected to a power supply of the type described in the operating instructions and as marked on the product.
- 7. This product, in combination with an amplifier, headphones, and speakers, may be capable of producing sound levels that could cause full or partial hearing loss or damaged equipment. Do not operate for long periods of time at high volume levels or at a level that is uncomfortable. If you

experience any hearing loss or ringing of the ears consult your physician.

- 8. Proteus FX may be equipped with a polarized line plug (one blade wider that the other). This is a safety feature. If you are unable to insert this plug into the outlet, do not defeat the safety purpose of the plug. Contact an electrician to replace your obsolete outlet.
- 9. The power supply cord of Proteus FX should be unplugged from the outlet when left unused for a long period of time.
- 10. Care should be taken so that objects do not fall and liquids are not spilled into the enclosure of Proteus FX through openings.
- 11. The product should be serviced by qualified service personnel when:
- A. The power supply cord has been damaged; or
- B. Objects have fallen, or liquid has been spilled into the product; or
- C. The product has been exposed to rain; or
- D. The product does not appear to operate normally or exhibits a marked change in performance; or
- E. The product has been dropped or the enclosure damaged.
- 12. All servicing should be referred to qualified service personnel.

SAVE THESE INSTRUCTIONS

Contents


Section 1	7	Introduction/Connection Instructions
	9	Introduction
	10	Basic organization
	11	Basic setup
	12	Studio setup
	13	Performance setup
	14	Power up
	14	About proteus FX
Section 2	15	Basic Operation
	17	Main controls
	18	Selecting presets
	18	Selecting MIDI channels, volume & pan
	19	Multi-timbral operation
	20	Playing the demo sequences
Section 3	21	Master Menu
	23	Enabling the master menu
	24	FX mix select
	24	Effect A
	24	Effect B
	25	Effects amount
	25	Master tune
	25	Transpose
	25	Global bend
	26	Global velocity curve
	26	MIDI mode

		Master Menu
	26	MIDI mode change
	26	MIDI overflow
	27	MIDI enable
	27	Bank/Preset change
	28	MIDI controller assign
	29	MIDI footswitch assign
	29	Program -> preset map
	30	Send MIDI data
	30	User key tuning
	30	Viewing angle
Section 4	31	Effects Section
	33	Effects bus architecture
	34	Effects output routing
	34	Effect programming
	35	Reverb
	38	Stereo chorus
	39	Stereo flanger
	41	Stereo phaser
	42	Delay
	43	Cross delay
	44	Echo
	46	Stereo fuzz
	47	Ring modulator
Section 5	49	Preset Programming
	51	Splitting & layering the keyboard
	52	Modulation
	53	Modulation sources
	54	Envelope generators
	55	Low frequency oscillators
	56	Midipatch


	57	Keyboard & velocity modulation
	58	Key number
	58	Velocity curve
	59	Realtime modulation
	60	MIDI realtime controls
Section 6	63	Edit Menu
	65	Enabling the edit menu
	66	Preset name
	66	Primary instrument
	66	Secondary instrument
<u></u>	66	Key range
	67	Primary key range
	67	Secondary key range
	68	Volume
	68	Pan
	68	Coarse tuning
	68	Fine tuning
	68	Chorus
	69	Delay
	69	Solo mode
	69	Sound start
	69	Reverse sound
	70	Alternate envelope on/off
	70	Primary & secondary alternate envelope parameters
	70	Crossfade mode
	71	Crossfade direction
	71	Crossfade balance
	71	Crossfade amount
	72	Cross-switch point
	72	LFO - shape & amount
	72	LFO - rate, delay & variation

		Edit Menu
	73	Auxiliary envelope
	74	Keyboard & velocity modulation control
	75	Realtime modulation control
	76	Footswitch control
	76	MIDI control amount
	76	Pressure amount
	76	Pitch bend range
	76	Velocity range
	76	Keyboard center
	77	Keyboard tuning
	77	Preset links
	77	Save preset
Section 7	79	Step-by-Step
	81	Linking presets
	82	Editing presets
	83	Proteus synthesis
	85	Using Proteus FX with a sequencer
Section 8	87	Reference Section
	88	Factory RAM presets
	90	Factory ROM presets
	92	Instrument listing
	98	Percussion instrument locations
	104	Technical specifications
	105	MIDI implementation chart
	106	MIDI specifications
Index		

I Introduction

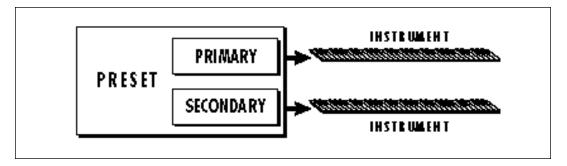
PROTEUS FX

Proteus FX is a musical instrument whose sounds are based on actual digital recordings of "real" instruments. In this way, Proteus FX is very similar to a sampling instrument. With the Proteus FX, we have done the sampling for you and loaded it with a collection of the cleanest 16 bit sounds ever sampled.

Proteus FX contains a massive 8 Megabytes of the highest quality 16 bit Rock/Pop and Orchestral samples selected from the Emulator III sound library and stored in ROMs for instant access. We have included everything you need to play and compose in a wide range of contemporary styles. You simply plug in and play.

But this is only the beginning. Proteus FX gives you the ability to literally take these sounds apart and reassemble them into an almost limitless number of entirely new sounds, combining parts of one

sound with another or with any of a selection of digital waveforms also stored on ROM. For example, the attack of a flute can be faded out as a vibe tone is faded in, giving you a completely new sound! The monophonic and true stereo 16 bit samples are arranged into 512 preset locations, 256 of which are user-programmable.


Proteus FX features 32 voice polyphony, allowing you to take full advantage of its layering capabilities (up to 8 sounds on each key) and its ability to respond multitimbrally to all 16 MIDI channels makes it ideally suited for multitrack sequencing and composing using a MIDI sequencer.

Other features include two studio-quality effects processors with 27 different effects, a user definable alternate tuning, and of course, an extensive MIDI implementation.

Basic Organization

Proteus FX is organized as shown in the diagram below.

The Preset is a complete set of all program parameters for a complete Proteus FX sound.

The preset memory is organized into two banks of 128 user RAM presets (banks 0-1) and two banks of unalterable ROM presets (banks 2-3).

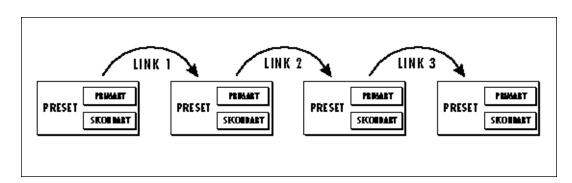
The primary and secondary layers are essentially two instruments with complete modulation controls. The two layers can be layered or placed adjacent to each other, and can be switched or crossfaded together in various ways.

Up to four presets can be Linked in order to have more than one preset on the keyboard at a time. The linked presets may lie on top of each other to create a dense layered sound or be arranged side by side on the keyboard to create a split keyboard.

USER RAM PRESETS CAN BE MOVED, ERASED OR ALTERED AS DESIRED

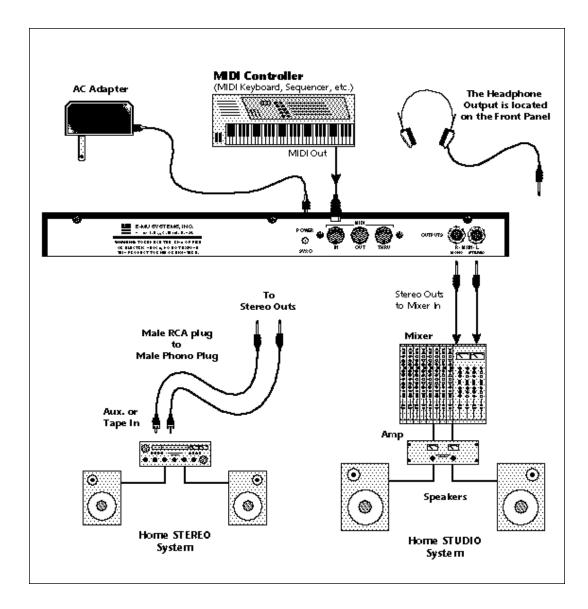
ROM PRESETS

CANNOT BE MOVED OR


ALTERED UNLESS THEY ARE
FIRST COPIED TO A USER

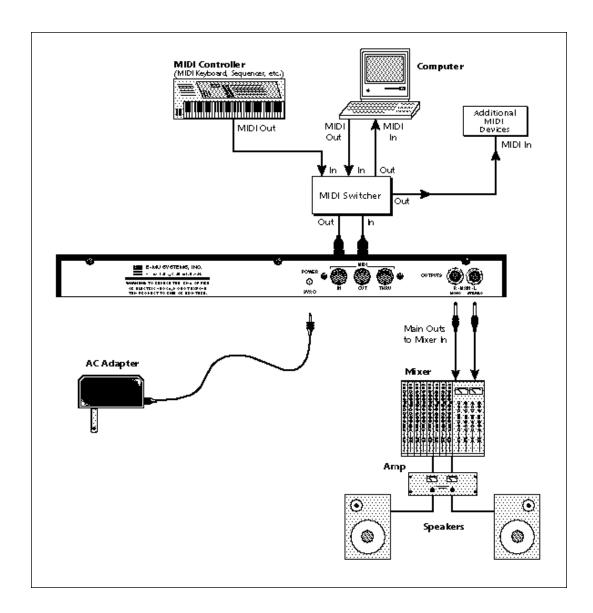
LOCATION

Bank Contents 0 - User RAM Presets 1 - User RAM Presets 2 - ROM Presets


3 - ROM Presets

Each preset consists of one or more Instruments. An instrument is a complete set of samples or a digital waveform which covers the entire keyboard range. An instrument can be assigned to each of the Primary and Secondary layers of the preset.

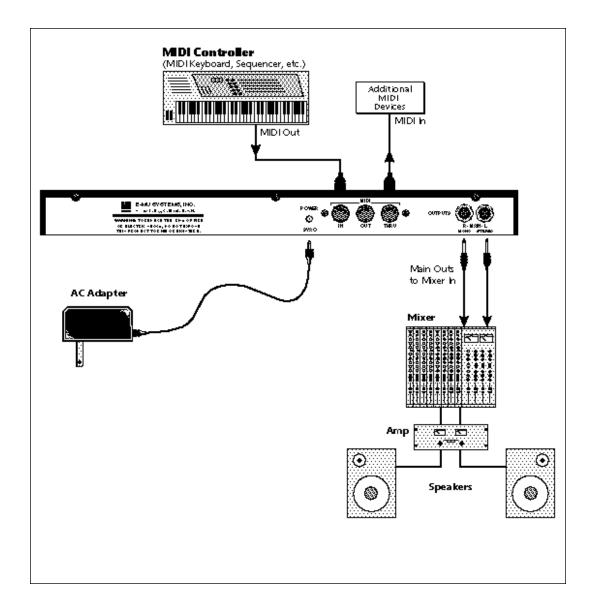
Basic Setup



MIDI In - Proteus FX is controlled by MIDI messages received at the MIDI In connector. Connect the MIDI In of the Proteus FX to the MIDI Out connector of a MIDI controller such as a MIDI keyboard, MIDI wind controller, or MIDI guitar controller.

Outputs - Proteus FX is a high quality, stereo audio device. In order to reproduce its wide dynamic range and frequency response, use a high quality amplification and speaker system such as a recording mixer and amplifier or home stereo system. A stereo setup is highly desirable because of the added realism of stereophonic sound. Headphones can be used if an amplifier and speaker system are not available. The right output jack serves as a mono output when the left jack is not plugged in.

Studio Setup


MIDI In - In this setup, Proteus FX is controlled by MIDI messages received at the MIDI In connector which have been routed by a MIDI switcher. The MIDI switcher allows any MIDI controller such as a MIDI keyboard, MIDI wind controller, or a computer to be easily connected.

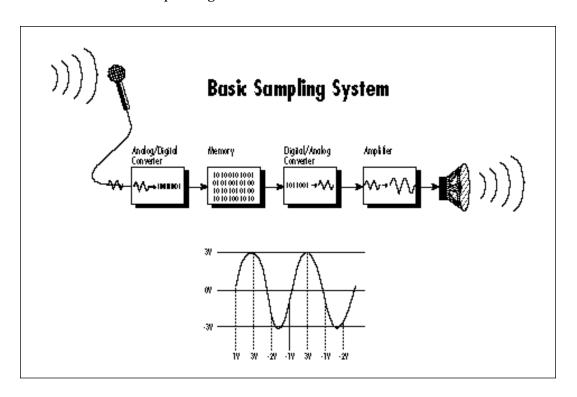
MIDI Out - The MIDI Out jack is normally used to transmit program data to a computer or other device.

Outputs - Use a high quality amplification and speaker system such as a recording mixer and amplifier or home stereo system. A stereo setup is highly desirable because of the added realism of stereophonic sound. The right output jack serves as a mono output when the left jack is not plugged in.

Performance Setup

MIDI In - Proteus FX is controlled by MIDI messages received at the MIDI In connector. Connect MIDI In of the Proteus FX to MIDI Out of a MIDI controller such as a MIDI keyboard, MIDI wind controller, or MIDI guitar controller.

MIDI Thru - MIDI Thru transmits an exact copy of the messages received at the MIDI In jack and is used to connect additional MIDI devices onto the MIDI chain.

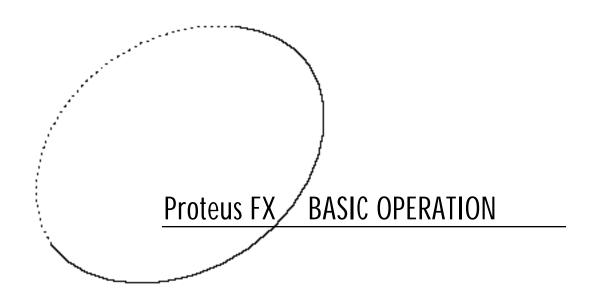

Outputs - Use a high quality amplification and speaker system such as a keyboard amplifier and speakers. A stereo setup is highly desirable because of the added realism of stereophonic sound. The headphone jack is located on the front panel. The right output jack serves as a mono output when the left jack is not plugged in.

POWER UP!

Before applying power, make sure that you have received the correct AC adapter for your part of the world (110V or 220V). Always connect the AC adapter to the Proteus before plugging it into the wall. The power switch is located on the right side of the front panel. The Proteus FX and its MIDI controller may be turned on in any order. When power is applied, the liquid crystal display will light, indicating that the Proteus FX is operating.

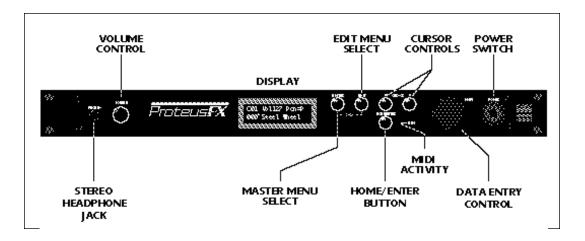
After the sounds and waveforms have been truncated, looped and processed, they are "masked" into the Proteus FX ROM (Read Only Memory) chips.

Conceptually, the sampling process is very simple, as shown in the Basic Sampling System diagram. As a sound wave strikes the diaphragm of a microphone, a corresponding voltage is generated. To sample the sound, the voltage level is repeatedly measured at a very high rate



ABOUT PROTEUS FX

Proteus FX, unlike many synthesizers, utilizes digital recordings of "real" instruments for the basis of its sound. This is similar to a tape recorder except that in the Proteus FX, the sounds are permanently recorded on digital memory chips.


To perform this modern miracle, sounds and instrument waveforms are first sampled into the Emulator III, our top of the line, 16 bit stereo digital sampler.

and the voltage measurements are stored in memory. To play the sound back, the numbers are read back from memory, converted back into voltages, then amplified and fed to a speaker which converts the voltage back into sound waves. Of course, playing back 32 channels at different pitches tends to complicate matters, but this is basically how it works. In Proteus FX, we have left out the analog to digital converter stage since the sounds are already sampled for you.

2 Main Controls

Power Switch

Switches AC power to the Proteus FX On and Off.

MIDI Activity LED Indicates that MIDI data is being received.

Master Menu Select Button

The Master menu contains parameters that affect the entire machine, not just certain presets. The Effects screens are also located in the Master menu. An illuminated LED to the left of the button indicates that you are in the Master menu.

Edit Menu Select Button

The Edit menu is used when you want to change parameters of a preset. An illuminated LED to the left of the button indicates that you are in the Edit menu.

Home/Enter Button

The Home/Enter button is used to confirm a particular operation or return the cursor to the "Home" position. The adjacent LED flashes to indicate that Proteus FX is waiting for your response.

Cursor Control

These buttons move the cursor to the next parameter on the display in a clockwise or counterclockwise direction. (The cursor is a little flashing line underneath one of the parameters in the display.) Press either cursor control repeatedly until the cursor is underneath the desired parameter.

Data Entry Control

The data entry control is a stepped, variable control which is used to change parameter values. The control increments or decrements the current value one unit with each click. This control incorporates acceleration (values advance faster if the control is turned quickly).

Volume Control

This is the master volume control for all audio outputs. Note: For maximum dynamic range, set this control at full level and adjust the amplifier or mixer volume.

IF YOUR PROTEUS IS NOT RESPONDING PROPERLY OR PLAYS THE WRONG PRESET, MAKE SURE THAT PROTEUS AND YOUR MID! CONTROLLER ARE SET TO THE SAME MID! CHANNEL AND THAT THE MID! VOLUME IS TURNED UP. FOR MORE INFORMATION ABOUT MID!, SEE MID! REALTIME CONTROLS ON PAGE 60.

CHANNEL PAN SHOULD NORMALLY BE SET TO "P" UNIESS REALTIME CONTROL OF PANNING IS DESIRED. THIS WILL ALLOW THE PAN SETTINGS PROGRAMMED FOR EACH PRESET TO BE USED.

MIDI CHANNEL SELECTION

Press the cursor key repeatedly until the cursor is underneath the channel number. (The cursor is a little flashing line underneath one of the parameters in the display.) Rotate the data entry control to select MIDI channel 01-16. As the channel is changed, the display will change to show the preset, volume and pan associated with the displayed channel.

C01 Vol 127 Pan=P 000° Preset Name

PRESET SELECTION

Press the cursor key repeatedly until the cursor is underneath the preset number. (The cursor is a little flashing line underneath one of the parameters in the display.) As the data entry control is rotated, the preset number and name will change. The displayed preset will be assigned to the displayed MIDI channel. Preset numbers are arranged into four banks of 128.

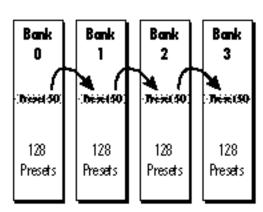
C01 Vol 127 Pan=P 000° Preset Name

PRESET BANK SELECTION

You can jump between preset banks by following the steps outlined below.

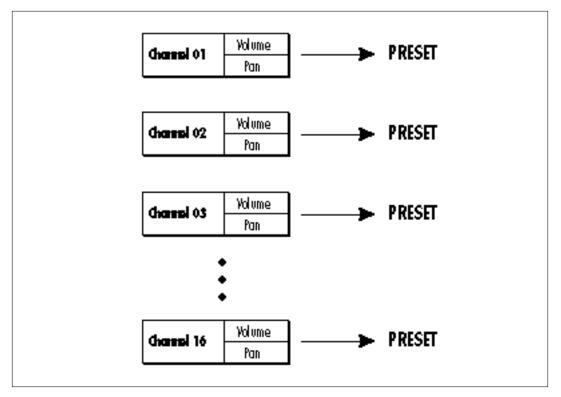
- 1. Press and Hold the Home/Enter button. While holding the button, turn the data entry knob.
- 2. Turning the knob will cause the preset to jump to the same location in the next bank.

CHANNEL VOLUME


Press the cursor key repeatedly until the cursor is underneath the volume value. Rotate the data entry control to select volume 00-127. (This is the same parameter as MIDI volume control #7, and changes made over MIDI will be shown in the display.)

CO1 Vol 127 Pan=P 000° Preset Name

CHANNEL PAN


Press the cursor key repeatedly until the cursor is underneath the pan value. Rotate the data entry control to select pan values -7 to +7 or "P". When "P" is selected, the pan value specified in the preset is selected. Any other value will override the pan parameter in the preset. (This is the same parameter as MIDI pan control #10, and changes made over MIDI will be shown in the display.)

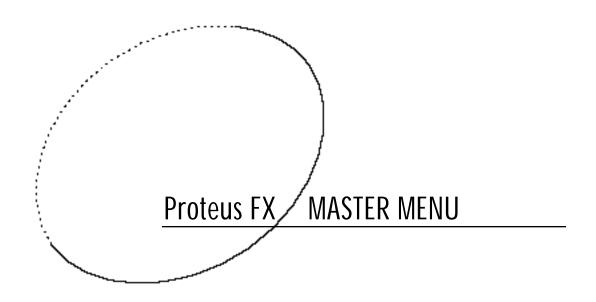
C01 Vol 127 Pan+7 000° Preset Name

The bank selection feature allows you to jump between banks of 128 presets.

Each of the 16 MIDI channels can be assigned to play a specific preset in Proteus FX.

MULTI-TIMBRAL OPERATION
Multi-timbral operation means that
Proteus FX can play more than one sound
at the same time. To access multiple
presets on different MIDI channels
simultaneously, follow these instructions:

- 1. Set the MIDI mode to MULTI-Mode, using the MIDI mode function in the Master menu (page 26).
- 2. Decide which MIDI channels you wish Proteus FX to receive, and (optionally) turn all other channels OFF using the MIDI Enable function in the Master menu (page 27).


Up to 16 channels can be selected simultaneously!

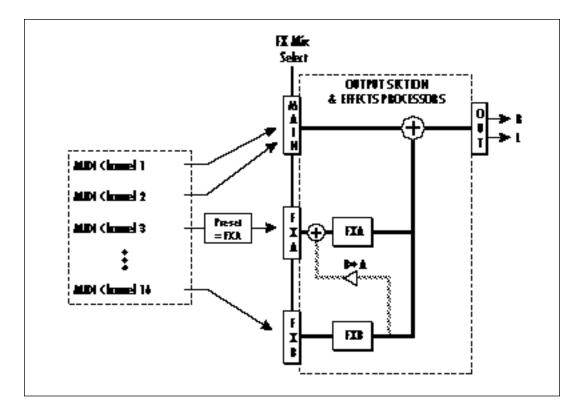
3. Select the desired preset for each of the MIDI channels you wish Proteus FX to receive using the MIDI Channel/Preset selection screen (see previous instructions).

4. Proteus FX will now respond multitimbrally on the MIDI channels you have specified. The volume and pan position parameters can be adjusted over MIDI (for each MIDI channel) or using the Cursor and Data Entry control in the MIDI Channel/Preset selection screen. PLAYING THE DEMO SEQUENCES

Proteus FX contains a play-only sequencer in order to give you an idea of what is possible using this amazing machine. Press and hold both the Master button and the Edit button. The sequence will start in a moment. Press the Enter button to stop the sequence. Press the right cursor button to toggle between the sequences. Press the left cursor button to start the current sequence again. Proteus FX contains 2 sequences.

DEMO: 1 2 ENTER=Stop >=Nxt

The Master Menu


The Master menu contains functions that affect the overall operation of Proteus FX. For example, changing the Master Tune will change the tuning of all the presets, not just the one currently displayed. The Master Menu contains the two digital effects processors, since they are programmed globally for all presets.

TO ENABLE THE MASTER MENU Press the Master key, lighting the LED. The current screen will be the one most recently selected since powering up Proteus FX. The cursor will appear underneath the first character of the screen heading on the top line.

TO SELECT A NEW SCREEN
Press the cursor key repeatedly (or hold the cursor key while turning the data entry control) until the cursor is underneath the screen title heading. Rotate the data entry control to select another screen.

TO MODIFY A PARAMETER Press the cursor key repeatedly (or hold the cursor key while turning the data entry control) until the cursor is underneath the parameter value. Rotate the data entry control to change the value.

TO RETURN TO PRESET SELECT MODE Press the Master key, turning off the LED.

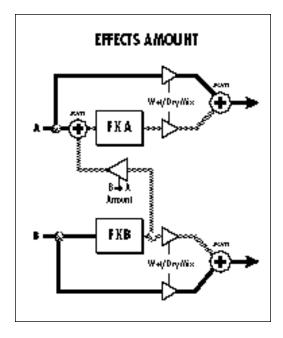
FX MIX SELECT

This function selects which bus in the output section will be used for each MIDI channel. You can route each MIDI channel through the FxA or FxB processors or directly to the Main outputs (no effects). An additional selection called Preset (Prst), allows the selection to be made in the preset (FX Mix Select). Thus effects can be selected according to MIDI channel or by preset.

FX MIX SELECT channel 01: FxA

EFFECT A

This function allows you to select the type of effect for effect bus A and contains the parameters associated with each effect.


See the Effects chapter for detailed information on each effect.

FXA: Hall1 Decay Time 140

EFFECT B

This function allows you to select the type of effect for effect bus B and contains the parameters associated with each effect. See the Effects chapter for detailed information on each effect.

FXB: StereoChorus Lfo Rate 050

FX AMOUNT

This function allows you to adjust the ratio of wet (processed) to dry (unprocessed) signal coming out of each effect processor. A setting of 100% would indicate that all of the signal is being processed by the effect. The B->A parameter allows you to adjust the amount of effect B that will be fed through the A effect. If B->A is set above 100%, the word "Only" is displayed and the B amount changes to "Off". This disconnects effect B from the outputs and routes ALL of effect B through effect A.

FX AMOUNT A: 50% B- >A: 0% B: 75%

MASTER TUNE

Master Tune adjusts the overall tuning of all presets so that Proteus FX can be tuned to other instruments. The master tuning range is \pm 1 semitone in 1/64th semitone increments. A master tune setting of "00" would indicate that Proteus FX is perfectly tuned to concert pitch (A=440 Hz).

MASTER TUNE +63

TRANSPOSE

This function transposes the key of Proteus FX in half-step intervals. The transpose range is \pm 12 semitones or one octave.

TRANSPOSE +12 semi tones

GLOBAL BEND

This function sets the range of the pitch wheel only when it is routed to control pitch. The maximum pitch bend range is \pm 12 semitones. This function only affects presets which have their individual pitch bend range set to global.

GLOBAL BEND ± 12 semitones

WARNING! WHEN
TRANSFERRING SYSEX
DATA FROM ONE
PROTEUS FX TO
ANOTHER, THE ID
NUMBERS OF BOTH
UNITS MUST MATCH.

UNLESS YOU ARE ÚŚÍNG MULTIPLE PROTEUS UNITS IT IS BEST TO LEAVE THE ID NUMBER SET TO 00.

GLOBAL VELOCITY CURVE

Incoming velocity data can be modified by a velocity curve in order to provide different types of dynamics in response to your playing or to better adapt to a MIDI controller. This function allows you to select one of the four velocity curves or leave the velocity data unaltered (off). Global velocity curve only affects presets which have their individual velocity curve set to global. For more information on the velocity curves, see page 58.

GLOBAL VEL CURVE 4

MIDI MODE

This function selects one of the four MIDI modes and the MIDI system exclusive ID number.

Omni mode

Proteus FX responds to note information on all MIDI channels and plays the preset currently displayed in the main screen.

Poly mode

Proteus FX only responds to note information received on the currently selected MIDI channel (on the preset selection screen) and plays that channel's associated preset.

Multi mode

Proteus FX responds to data on any combination of MIDI channels and plays the specific preset associated with each of the MIDI channels.

Mono mode

Proteus FX responds to data on any combination of MIDI channels but plays each channel monophonically. If a new note on a channel is played before the last

note is released, the envelopes will not be retriggered (legato). Mono mode is particularly useful with alternate controllers such as MIDI guitars, etc.

ID number

This function allows an external programming unit to distinguish between multiple Proteus FX units. In the case of multiple Proteus FX units, each Proteus FX should have a different ID number.

MIDI MODE ID Omni 00

MIDI MODE CHANGE

This function selects whether or not MIDI mode change commands are accepted or ignored when received over MIDI (see MIDI Mode).

MIDI MODE CHANGE Disabled

MIDI OVERFLOW

When on, if you play more notes than Proteus FX has channels (32), the additional note data will be directed out the MIDI Out port to a second Proteus FX or other MIDI device. MIDI Overflow can be turned On or Off.

MIDI OVERFLOW Off

MIDI ENABLE

When in MIDI Multi mode, this function lets you turn each MIDI channel On or Off. This is useful when you have other MIDI devices connected and do not want Proteus FX to respond to the MIDI channels reserved for the other devices. MIDI Enable only operates in Multi Mode.

MI DI ENABLE channel: 01 On

BANK/PRESET CHANGE

This function allows Proteus FX to utilize or ignore incoming MIDI program change commands for each channel. Since MIDI can only select presets 000-127, this function also allows you to select which bank of 128 presets will be accessed via incoming program change commands. Another option, "Map," routes incoming program changes to the MIDI program -> preset mapping function. See page 29.

BANK/PRST CHANGE channel 01: 0ff

PROGRAM CHANGES IGNORED ON MIDI CHANNEL 1

BANK/PRST CHANGE channel 02: Bank1

PROGRAM CHANGES ROUTED TO PRESET BANK 1 ON MIDI CHANNEL 2

BANK/PRST CHANGE channel 03: Map

PROGRAM CHANGES ROUTED

THROUGH THE PROGRAM ->PRESET
MAP ON MIDI CHANNEL 3

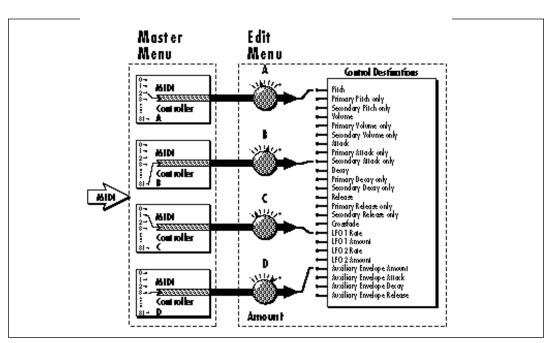
SOME OF THE STANDARD MIDI CONTROLLER NUMBERS ARE LISTED BELOW:

- 1 MODULATION WHEEL OR LEVER
- 2 BREATH CONTROLLER
- 3 PRESSURE: REV 1 DX7
- 4 FOOT PEDAL
- **5 PORTAMENTO TIME**
- 6 DATA ENTRY
- VOLUME
- 8 BALANCE
- UNDEFINED
- 10 PAN

MIDI CONTROLLER ASSIGN

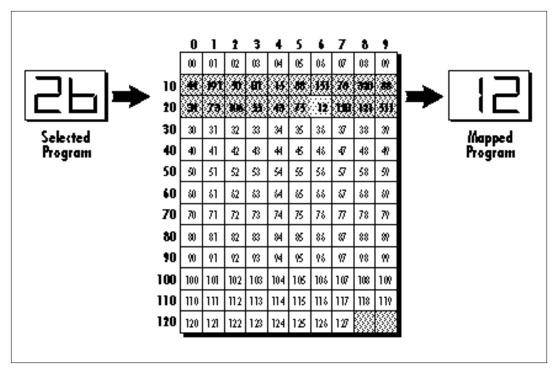
Proteus FX allows you to assign up to four realtime control sources from your MIDI controller. These control sources could be modulation wheels, data sliders or whatever. In this screen, you set up which controllers will be received by Proteus FX. What effect the controller will have is programmed separately for each preset. MIDI controllers are each assigned a letter, A-D. Each controller letter can be assigned to a MIDI realtime controller from 01-31. Note: If controller numbers 7 or 10 are selected, they will override the standard MIDI volume and pan control routings.

> CONTROLLER # A: 01 B: 02


For more information on MIDI controllers, see "MIDI Realtime Controls" in chapter 5, Preset Programming.

CONTROLLER # C: 03 D: 04

Next Screen:


SOME OF THE STANDARD MIDI SWITCH NUMBERS ARE LISTED BELOW 64 SUSTAIN SWITCH (ON/OFF)

- 65 PORTAMENTO SWITCH (ON/OFF)
- 66 SOSTENUTO (CHORD HOLD, ON/OFF)
- 67 SOFT PEDAL (ON/OFF)
- 69 HOLD PEDAL 2 (ON/OFF)

The MIDI controller A-B-C-D must have both a source (0-31) and a control destination assigned.

This chart shows how MIDI preset changes can be re-mapped. In this example, program changes 10-29 have been re-mapped. All other programs will be selected normally.

MIDI FOOTSWITCH ASSIGN Like the MIDI Controllers, 3 MIDI footswitches can be assigned to MIDI footswitch numbers. Footswitches can be assigned numbers from 64-79. Destinations for the footswitch controllers are programmed in the Edit menu.

FOOTSWITCH #

1: 64 2: 65 3: 66

PROGRAM -> PRESET MAP

Incoming MIDI program changes can be remapped to a different numbered preset. This is a handy feature when you want a specific preset number sent from the master synth to call up another specific preset number on Proteus FX. For example, the Program Change Map could be set to call up preset 012^1 whenever Proteus FX receives program change number 26. Any preset can be mapped to any incoming MIDI program change number.

MAP PROGRAM 026> 012 prc: Xyl ophony

IF THE PROGRAM ->
PRESET MAP DOES NOT
SEEM TO WORK, MAKE
SURE THAT THE BANK/
PRESET CHANGE
FUNCTION IS SET TO
"MAP" (PAGE 27)

THE PRESET. YOUNG, AND PAN INFORMATION FOR ALL 16 CHANNELS IS INCLUDED WHEN THE MASTER SETTINGS ARE TRANSMITTED OR RECEIVED.

SEND MIDI DATA

This function transmits MIDI System Exclusive data to the MIDI Out port. MIDI data can either be sent to a computer/sequencer or to another Proteus FX. Using the cursor key and the data entry control, select the type of MIDI data you wish to transmit. The choices are:

Effect Settings

Transmits all the current effects parameters except mix select (for the 16 MIDI channels).

Master Settings

Transmits all parameters in the Master menu except effects, tuning table, program/preset map and viewing angle.

Program/Preset Map

Transmits only the program/preset map.

Tuning Table

Transmits only the user tuning table.

Factory Presets

Transmits all the factory presets.

User Presets

Transmits all the user presets.

Any Individual Preset

Transmits only the selected preset.

SEND MI DI DATA 000 kbd: Bri tePno

The Enter LED will be flashing. Press the Enter button to confirm the operation.

WARNING! WHEN
TRANSFERRING SYSEX
DATA FROM ONE
PROTEUS FX TO
ANOTHER, THE ID
NUMBERS OF BOTH
UNITS MUST MATCH.

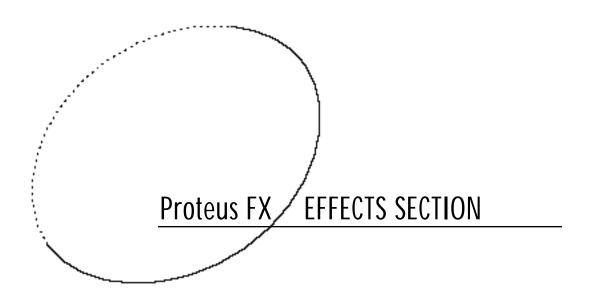
TO TRANSMIT MIDI DATA TO A SEQUENCER

- 1. SET UP SEQUENCER TO RECEIVE SYSTEM EXCLUSIVE DATA.
- 2. START SEQUENCER RECORDING, THEN SEND PRESET DATA.

TO RECEIVE MIDI DATA FROM A SEQUENCER

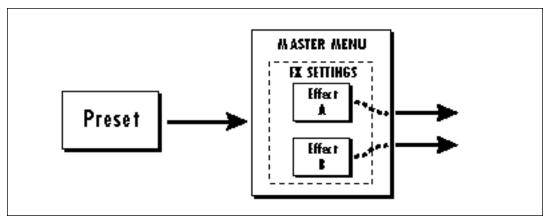
1. SIMPLY PLAY BACK THE SEQUENCE INTO PROTEUS FX

USER KEY TUNING


In addition to standard twelve tone equal temperament, Proteus FX contains four additional preset tuning tables (Just C, Vallotti, 19 tone, and Gamelan) and one user definable tuning. User Key Tuning allows you to alter the parameters of the user definable tuning stored in memory. The initial frequency of every key can be individually tuned, facilitating the creation of microtonal scales. Using the cursor key and the data entry control, select the key name, the MIDI key number and the fine tuning. The key name is variable from C-2 to G8. MIDI key number is variable from 0 to 127. The fine tuning is variable from 00 to 63 in increments of 1/64 of a semitone (approx. 1.56 cents). For each preset, the specific tuning table is selected in the Edit menu.

> USER KEY TUNING Key: C1 036-00

VIEWING ANGLE

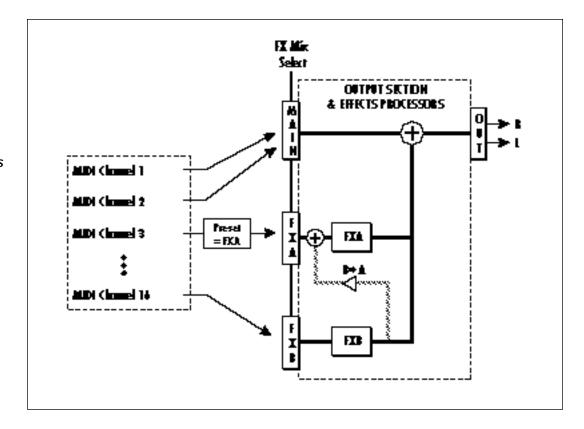

This function allows you to change the viewing angle of the display so that it may be easily read from either above or below. The angle is adjustable from +7 to -8. Positive values will make the display easier to read when viewed from above. Negative values make the display easier to read from below.

VI EWI NG ANGLE

4 Effects Section

The two effect processors are programmed globally for the entire machine.

EFFECTS BUS ARCHITECTURE


Two separate digital effects processors are included in the Proteus FX. The "A" effect processor includes several types of Reverberation, which is an electronic simulation of a natural space such as a room or hall, as well as Delays, Echoes, Chorusing, Phaser and Flanging effects. The "B" effect processor contains special effects such as a Ring Modulator and two types of Fuzz.

Each effect has its own set of control parameters which are appropriate to that particular effect. For both the A and B effects there is an amount parameter which determines the relative mix of the processed and unprocessed signals (wet/dry mix). The output of the B effect can also be routed back through processor A.

The effect programming is done on a global basis, meaning that the two effects serve the entire machine. This is similar to the way an external effects unit would be connected except that in Proteus FX, the signal path is kept entirely in the digital domain in order to preserve the excellent sound quality.

The choice of which of the two effects is used for a particular sound can be made by MIDI channel or it can be selected per preset.

EFFECTS CAN BE STORED AS PART OF A SEQUENCE BY USING "SEND EFFECTS" IN THE MASTER MENU

EDITED EFFECTS
PARAMETERS ARE NOT
REMEMBERED WHEN A
NEW EFFECT IS SELECTED.

EFFECTS OUTPUT ROUTING

The diagram above shows how the effects section is integrated into the output jack routing scheme. The mix bus can be selected either by the preset or by MIDI channel. When "Preset" is selected, the FX MIX SELECT programmed in the preset is used.

TO PROGRAM AN EFFECT:

- 1) Press the MASTER button lighting the LED.
- 2) The first screen in the Master menu is shown below. Select one of the effect processors for each MIDI channel you wish to use (or select "Preset" if you want the selection in the preset to be used), This control selects the input to the effect processors.

FX MIX SELECT channel 01: FxA

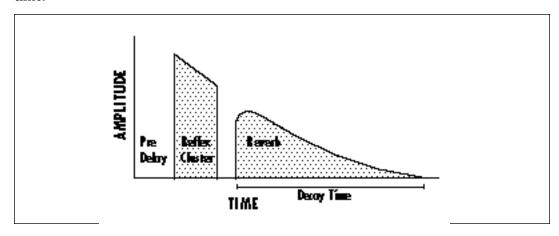
3) Select the desired effect and program the appropriate parameters.

FXA: Echo L Delay Time 255

4) Set the FX Amount for the A or B effect. This adjusts the ratio of effected to un-effected signal. B->A allows you to route the output of effect B through effect A (set the MIX to FxB).

FX AMOUNT A: 50% B->A: 0% B: 50%

5) That's it!


A EFFECTS **ROOM WARM ROOM SMALL ROOMS 1 & 2** HALLS 1, 2 & 3 CHAMBERS 1 & 2 **PLATES 1 & 2 EARLY REFLECTIONS 1-4 REVERSE EARLY REFLECTIONS RAIN & SHIMMER** STEREO CHORUS STEREO FLANGE **PHASER ECHO DELAY CROSS DELAY**

B EFFECTS
STEREO CHORUS
STEREO FLANGE
PHASER
DELAY
CROSS DELAY
FUZZ
FUZZ LITE
RING MODULATOR

REVERB

Reverberation is a simulation of a natural space such as a room or hall. The reverb effects in Proteus FX simulate various halls, chambers, rooms and reverberation plates. In addition, there are several other reverb effects such as Early Reflections and Rain. There is only one adjustable parameter on the reverbs - Decay Time. Decay time is the length of time that it takes for the reflected sound from the walls of the room to die away. In general, the larger the room, the longer the decay time.

The diagram below breaks down the reverberated sound into its component parts. After an initial pre-delay period, the echoes from the closest walls or ceiling are heard. These first echoes or the early reflection cluster, vary greatly depending on the type of room. Roughly 20 milliseconds after the reflection cluster, the actual reverberation begins and decays according to the time set by the decay time parameter.

Room programs simulate small rooms with high frequency absorption caused by drapes and furniture.

Plates simulate plate type reverbs with their tight, dense early reflections and sharp reverb build-up.

Chambers simulate medium sized rooms with hard reflective surfaces.

Hall programs recreate the open, spacious ambience of large concert halls.

Early Reflection programs consist of the reflection cluster only without the reverb decay. These effects are similar to a multiple tap delay line and have a single adjustable parameter - Ambience.

The special reverbs Rain & Shimmer are variations of the early reflection programs and consist of a dense group of short echoes followed by longer echoes.

FXA: <u>H</u>all 1

Decay Time: 165

Place the cursor underneath the reverb name and use the data entry control to change the type of reverb. Moving the cursor to the lower line allows you to change the decay time of the reverb. The decay times of the reverb programs vary from effect to effect (Rooms: 50-250, Small Rooms: 10-128, Halls: 100-255, Chambers: 50-200, Plate 1: 80-200, Plate 2: 80-250.

The Early Reflection programs have an Ambience parameter which is variable between 0-100. The ambience parameter is a diffusion control which simulates the effect of an irregular wall surface as the amount is increased.

REVERB EFFECTS

Room

A bright, medium sized room. The apparent source position is fairly close to the listener. Suitable for use with 100% wet mix setting for adding ambience.

Warm Room

This reverb is similar to "Room" with more high frequency absorption, slightly larger size and a more distant source position.

Small Room 1

This reverb is also similar to "Room" with shorter initial reflections, shorter decay times and higher reflection density due to the reduced room size. The apparent source position is closer to the listener.

Small Room 2

This reverb is a variation of "Small Room 1" with greater high frequency damping and a more distant source position.

Hall 1

Hall 1 is a large, highly reverberant space with auditorium-like acoustics. Like all the Hall programs, "Hall 1" exhibits a warm, distant ambience with slow reflection density buildup. With the decay parameter set to maximum, "infinite" reverberation effects can be obtained. Adjustment of wet-dry mix can be used to position the listener from the "front row" (25%) to "back of the balcony" (100%).

Hall 2

This reverb is similar to "Hall 1", but harder and brighter, with more pronounced slap echoes that come from parallel reflecting surfaces in the room. Hall 2 also exhibits a pronounced reverb "bloom" or late-reflection buildup. A 50% wet mix creates the optimum "close" distance adjustment.

Hall 3

Hall 3 is similar to "Hall 2", but with larger scale stadium-like acoustics. Hall 3 is warmer than Hall 2 (more high frequency damping) and does not display the obvious early reflections and slap echoes. It also exhibits a distinct predelay of approximately 100 milliseconds and a pronounced late reflection buildup both of which contribute to the impression of a large space. Wet mix values of 10% to 50% are most appropriate, although a setting of 100% produces an effective cave simulation.

Chamber 1

A simulation of a bright, medium-sized chamber reverb or recital hall with hard walls. Early reflections are very prominent, with high reflection density. Moderately long decays are possible at the maximum decay setting.

Chamber 2

Similar to "Chamber 1" but with a much warmer sound. The wet mix adjustment provides an effective control over the apparent source location from close (10%) to very distant (100%).

Plate 1

Simulates a plate reverb unit. Gives a tight, bright, slightly metallic sound. Reflection buildup is very rapid, with high density. Early reflections are minimized.

Plate 2

An effect similar to Plate 1, but slightly warmer with less density.

EARLY REFLECTION GROUP

Early Reflection 1

Early Reflection 2

Early Reflection 3

Early Reflection 4

All Early Reflection programs have a single Ambience parameter which adds diffusion to the individual reflections. Lower ambience settings cause reflections to become more discrete, simulating harder reflecting surfaces. The early reflection programs are simulations of increasingly large acoustic spaces, from a small studio (Early Refl 1) to a large room like a sound stage (Early Refl 4). The wet mix control acts effectively as source distance control. In general, lower mix amounts are more effective as the room size increases.

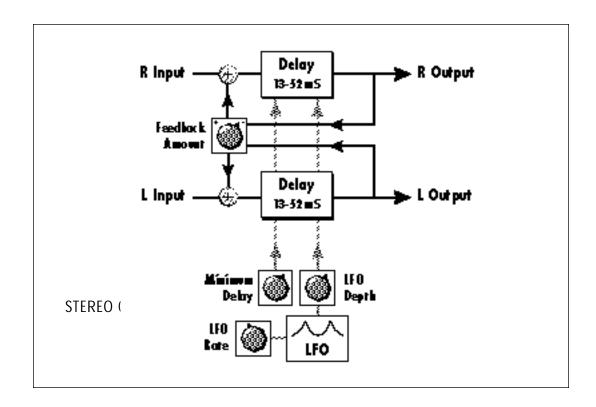
Reverse Early Reflection

More of a special effect than an acoustic simulation, Reverse ER contains a set of exponentially increasing delay taps, creating a kind of "zip" sound at low Ambience settings. At maximum ambience and lower wet mix values, the sound is more authentically acoustic, with a long, delayed reflection "bloom". The effect is similar to a large but well damped parking garage.

SPECIAL REVERBS

These special reverbs all have a single Decay Time parameter.

Rain


Similar to a repeating delay, but with complex spatial and filtering effects occurring across the stereo panorama. The effect on percussive sounds might be likened to a bucket of marbles raining down on a galvanized steel roof.

Shimmer

Distantly related to the Rain effect, Shimmer causes input signals to be progressively diffused in time and space across the stereo panorama. The spatial diffusion is accompanied by a flanging effect. The program is highly responsive to left or right-panned inputs. A stunning special effect with percussive sounds, especially through headphones.

STEREO CHORUS

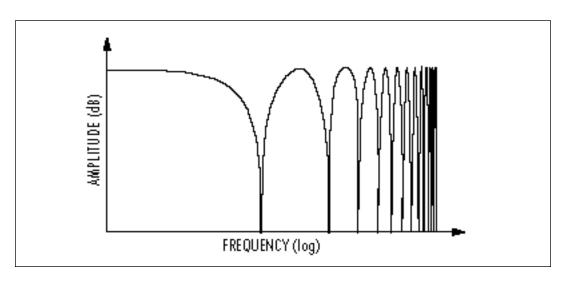
The function of a chorus device is to thicken the sound or to make one voice sound like many. The way the effect is achieved is by mixing one or more delayed versions of the signal in with the original. The delay times used are too short to be perceived as an echo, but long enough so that comb filtering does not occur. In addition, the delay time is varied to simulate the random differences which occur when multiple instruments are playing together. A slight amount of feedback improves the effect by creating multiple images of the sound as it recirculates again and again. The delay times are slightly different for each channel and the LFO phase is inverted on the right channel to help contribute to the overall chorus effect. The LFO Rate and Depth settings are critical to achieving a realistic effect with faster LFO Rates generally requiring less LFO Amount and viceversa.

The stereo chorus in the Proteus FX is very similar to the stereo flanger except that the delay time is longer. The delay times for the stereo chorus range from 13 milliseconds to 52 milliseconds, compared with the 26 microsecond to 6.5 millisecond range of the flanger.

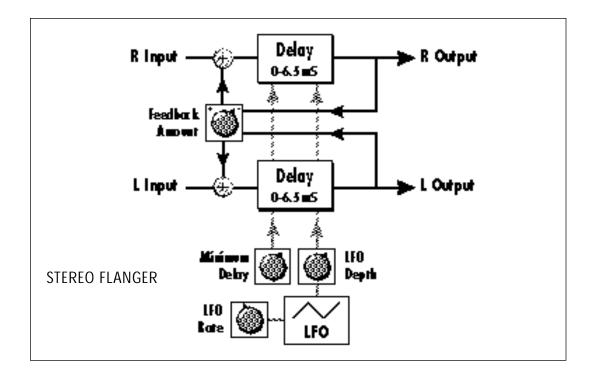
FXA: StereoChorus LFO Rate 050

FXA: StereoChorus LFO Depth 050

FXA: StereoChorus Min Delay 036


FXA: StereoChorus Feedback +100

STEREO FLANGER


A flanger consists of a short audio delay line whose output is mixed together with the original signal. Mixing the delayed and original signals together results in multiple frequency cancellations creating a comb filter effect as shown in the diagram below. Since the flanger is a type of filter, it works best with harmonically rich sounds such as strings.

The flanging effect was originally created using two tape recorders playing identical recordings. By exactly synchronizing the two decks and then slowing the speed of one by grasping the tape reel flanges, the flanging effect was born.

The flanger in the Proteus FX is a stereo device consisting of two separate delay lines controlled by a single set of controls. The block diagram of the flanger is shown on the following page.

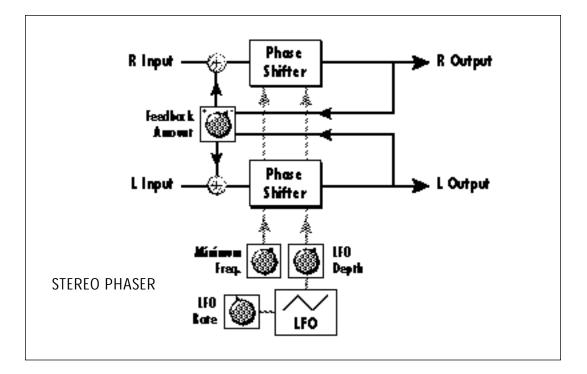
Adding the original signal together with a slightly delayed version creates multiple cancellations in the output signal called "comb filtering".

A Minimum Delay control serves to tune the flanger. In other words, it adjusts the placement of the comb filter notches. The initial delay is variable from 26 microseconds to 6.5 milliseconds.

> FXA: StereoFl ange Min Delay 100

A Low Frequency Oscillator (LFO) varies this initial delay setting, changing the frequency of the notches and adding animation to the sound. The LFO Rate controls the rate of change and the LFO Depth controls how much the delay is changed by the LFO. The LFO adds to the initial delay time so that with LFO Depth set to 255 the maximum delay time is 13 milliseconds.

FXA: StereoFl ange LFO Rate 038

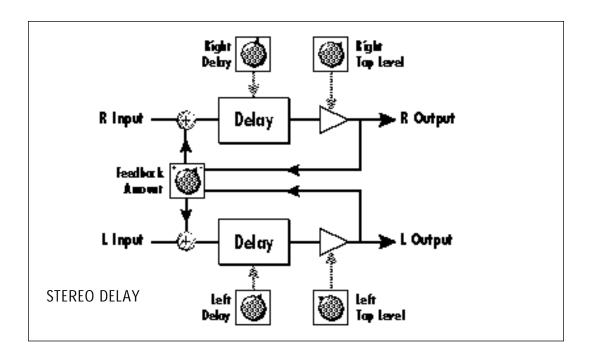

FXA: StereoFl ange LFO Depth 150

The Feedback control sends some of the delayed signal through the delay line again. When positive feedback is used (values +1 to +127), the comb filter notches are deepened; when negative feedback is used (values -1 to -127) resonant peaks are formed between the notches which increase with the amount of negative feedback.

FXA: StereoFl ange Feedback - 127

STEREO PHASER

The stereo phaser is an effect similar to the flanger although much more subtle. The phaser creates a swirly animation when used with harmonically rich sounds such as strings and voices. It can also be used like a chorus to thicken-up a thin sound. Use the Minimum Frequency control to "tune" the resonant frequencies of the peaks and notches to the sound. The LFO Depth controls the amount of animation that the effect will add. Feedback controls the depth of the peaks and notches.



FXA: Phaser Lfo Rate 060

FXA: Phaser Lfo Depth 015 FXA: Phaser Min Freq 001

FXA: Phaser Feedback 060

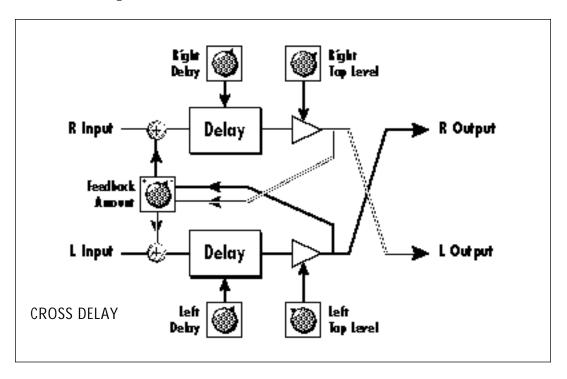
DELAY

The delay line is a stereo effect which can be used for doubling, echoes or fixed formant comb filtering with completely independent delay time and tap levels for the left and right sides. The delay is shown in the diagram below.

The Delay Time parameter is independently variable from 0 to 209 milliseconds for both the left and right channels. The Tap Level parameters control the amount of signal from the left and right delays as well as how much signal from each is supplied to the feedback control. Feedback controls how many echoes are produced. A setting of 0 produces only one echo. The delay line is incredibly stable even with large amounts of feedback. This quality allows the delay line to be used as a resonator, where it acts as a kind of oscillator when excited by an input signal. Infinite delay effects are also possible without the risk of runaway. The stereo delay can function as two independent delay lines by panning the primary and secondary instruments to the extreme left and right.

FXA: Del ay R Del ayTi me 060

FXA: Del ay R Tap Level 055

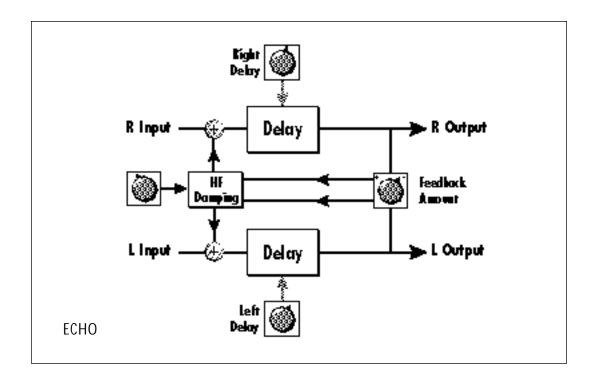

FXA: Delay L DelayTime 255

FXA: Del ay L Tap Level 120

FXA: Del ay Feedback +120

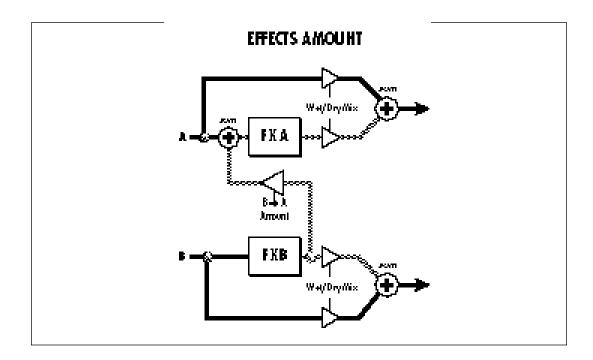
CROSS DELAY

Cross Delay is identical to the normal delay line except that the output paths and the feedback paths cross over to the opposite channel in order to produce a ping-pong type of effect when reproduced in stereo. Delay time is adjustable from 0 to 209 milliseconds. The Cross Delay is shown in the diagram below.


FXA: Cross Delay R DelayTime 060 FXA: Cross Delay L Tap Level 120

FXA: Cross Delay R Tap Level 055 FXA: Cross Delay Feedback 120

FXA: Cross Delay L DelayTime 255


ECHO

The Echo produces echoes up to 400 milliseconds in length (twice that of the Delay and Cross Delay effects). The feedback path is independent of the output level and utilizes a high frequency damping (low pass filter) control which can simulate traditional analog tape echo. Because the left and right delay controls are completely independent (0-400 mS) they be adjusted to create very interesting stereo echo effects.

FXA: Echo Feedback 100 FXA: Echo R Del ayTi me 100

FXA: Echo L Del ayTi me 255 FXA: Echo HF Damping 010

B EFFECTS

The B effects include Stereo Flanger, Stereo Chorus, Phaser, Fuzz, Ring Modulator, Delay, Cross Delay and Fuzz Lite. Some of the B effects such as the Fuzz and the Ring Modulator are a bit bizarre (you won't want to use them on every sound), but can be used to create some truly amazing effects. The B effects can additionally be routed through the A effect as shown in the diagram below. Simple effects such as Fuzz can take on a completely new character when routed through a Reverb.

STEREO DELAY B

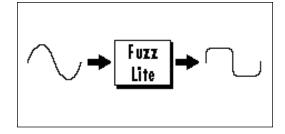
The B Delay is identical to the delay line in the A effect group except that the maximum delay time is 104 milliseconds (instead of 209 milliseconds). This delay is useful for short echoes, slapback and doubling effects, as well as for fixed formant comb filtering. Like Stereo Delay A, the feedback parameter is extremely stable even with high amounts, making it useful as a resonator for "infinite" delays.

STEREO CROSS DELAY B

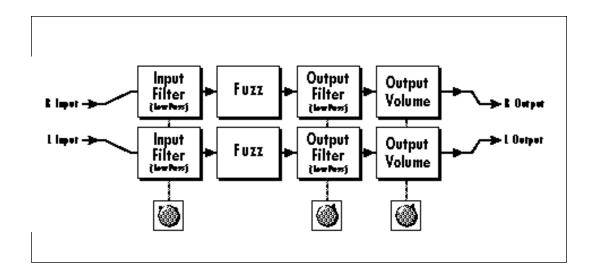
The B Cross Delay is identical to the cross delay line in the A effect group except that the maximum delay time is 104 milliseconds (instead of 209 mS). This delay is useful for short ping-pong echoes, stereo slapback and doubling effects.

STEREO FUZZ

The Stereo Fuzz introduces a controlled distortion to any signal passing through it. Distortion creates harmonics by clipping the top of the wave when it exceeds a certain level. Sine waves are transformed into square waves and complex waves take on noise-like qualities. There are two types of fuzz in Proteus FX: Fuzz and Fuzz Lite.


FUZZ

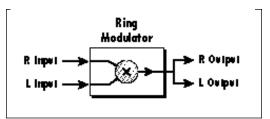
This Fuzz is probably the "grungiest" fuzz you have ever heard. Two filters, one at the input and one at the output of the fuzz, allow you to control the amount and type of harmonics added to the sound. The Input Filter controls the amount of harmonics produced by the fuzz and the Output Filter removes harmonics at the output, smoothing the sound. Higher values allow more harmonics to pass. The level of the input sound greatly affects the amount of fuzz, so that Proteus FX's envelopes can now control harmonic content as well as the volume. Output Volume sets the output level of the fuzz. There are two complete fuzz effects, controlled by the same set of controls as shown in the diagram below.

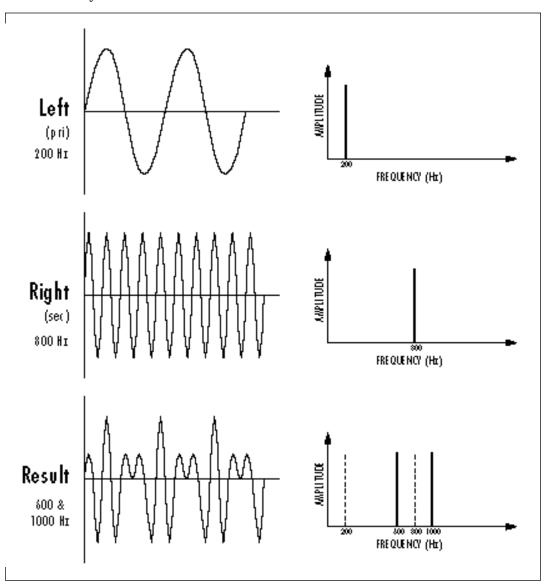

Two independent sounds can be processed by panning primary and secondary to opposite sides, or a single sound can be routed through both sides. If a single sound is panned slightly off center, the fuzz will act slightly differently on each side because of the difference in level.

FUZZ LITE

This is a more restrained type of fuzz utilizing "soft-clipping." As the level increases, the waveform through Fuzz Lite becomes somewhat squared. As signal level is increased further, it transforms into a square wave. There is no Output Volume control on Fuzz Lite.

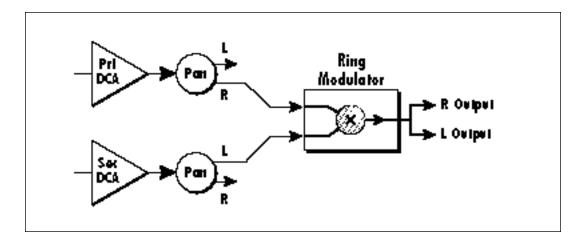
Experiment with the way the input and output filters work on the sound. Fuzz is a specialized effect, not for every situation, but another powerful tool in your musical arsenal.





RING MODULATOR

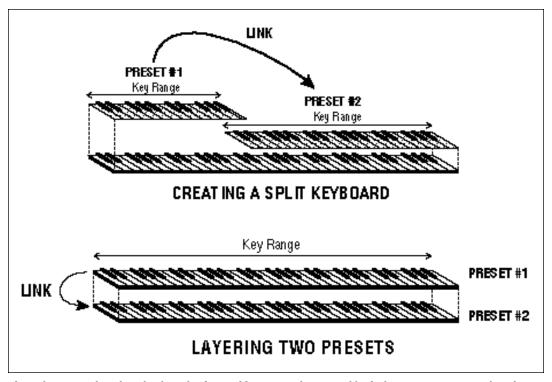
A Ring Modulator is a device which takes two signals and multiplies them together into one resultant signal containing only the sum and difference frequencies of the two input waves. The original frequencies are not output! However, every harmonic of each signal multiplies every other, according to its amplitude. As a result, ring modulators tend to generate a lot of non-harmonic frequencies which can sound very bell-like or out of tune.


There are no controls on the ring modulator as shown by the block diagram below. The left and right outputs are simply multiplied together to form a monophonic output.

This diagram shows the result of Ring Modulating two sine waves with frequencies of 800 Hz and 200 Hz. Only the Sum and Difference frequencies of 600 Hz and 1000 Hz will result.

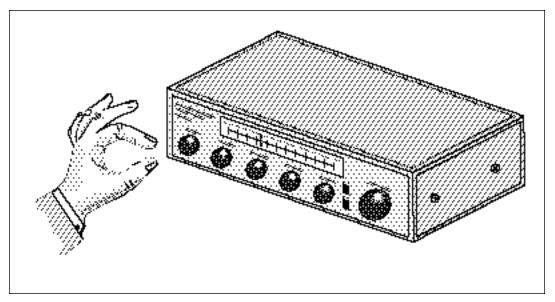

By routing the preset (or MIDI channel) to effect B and panning to opposite sides (shown below), two different waves can be ring modulated. Ring modulation works well with simple waves such as sine waves and the harmonic waveforms. Also, try complex waves modulated with sine waves. (Play chords!) Complex waveforms tend to sound rather noise-like.

Pan the primary and secondary instruments to left and right in the pan screen and then move to the Effect B screen and select Ring Modulator. There are no parameters to adjust in this effect so the lower line of the display always reads: None.


FXB: Ri ngModul ate None ---

5 Preset Programming

These diagrams show how keyboard splits and layers can be created by linking presets. Remember that each preset can consist of both a primary and secondary layer.


Your initial involvement with Proteus FX will most likely consist of using the existing presets and selecting MIDI channels. While the factory presets are very good, there are probably some things you would like to change, perhaps the LFO speed, or the attack time. You may also want to make your own custom presets using complex modulation routings. Entirely new sounds can be created by combining the attack portion of one sound with the body of another sound or by combining the digital waveforms with sampled sounds. There are 256 user locations (banks 0-1) available to store your own creations or edited factory presets. Best of all, it's easy to edit or create new presets using the edit menu.

Presets can be made up of both a primary and secondary instrument. Presets can also be "linked" with up to 3 additional presets to create layering or splits.

One way to create a keyboard split is to assign an instrument to a specific range and then link it to other presets which fill in the empty keys. By using both the primary and secondary instrument ranges for each of the individual preset links, up to eight keyboard splits can be produced.

Proteus FX has an extensive modulation architecture using two multi-wave LFO's (Low Frequency Oscillators), two envelope generators and the ability to respond to multiple MIDI controllers. You may simultaneously route any combination of these control sources to multiple destinations.

Turning the volume control back and forth on your home stereo is an example of amplitude modulation.

MODULATION

Modulation means to dynamically change a parameter, whether it be the volume (amplitude modulation), the pitch (frequency modulation), or whatever. Turning the volume control on your home stereo rapidly back and forth would be an example of amplitude modulation. To modulate something we need a modulation source and a modulation destination. The source is your hand turning the knob, and the destination is the volume control. If we had a device that would automatically turn the volume control, we would also call that device a modulation source. Proteus FX (and all synthesizers for that matter) is designed so that for each of the variable parameters, such as the volume, there is an initial setting

which can be changed by a modulation source. Therefore in the case of volume, we have an initial volume and we can change or modulate that volume with a modulation source. This can be thought of as a type of remote control in which one device automatically controls another in a precise way.

Two main types of modulation sources on Proteus FX are Envelope Generators and Low Frequency Oscillators. In the example above, an envelope generator could be routed to automatically turn the volume control as programmed by the envelope. Or, a low frequency oscillator could be routed to automatically turn the volume control up and down in a repeating fashion.

MODULATION SOURCES

Proteus FX uses three kinds of modulation sources.

KEYBOARD & VELOCITY MODULATION Values which are generated at the start of a note and do not change during the note.

Keyboard Key Which key is pressed.

Key Velocity How hard the key is pressed.

REALTIME MODULATION

Values which can be continuously changed during the entire duration of the sound.

Pitch Wheel

A synthesizer pitch bend wheel.

Miscellaneous Controllers (4) Any type of MIDI controller data.

Keyboard Pressure (mono aftertouch) Key pressure applied after the key is initially pressed.

Polyphonic Key Pressure (poly aftertouch)

Polyphonic aftertouch from a controller capable of generating polyphonic pressure data. Poly pressure is received on a "per note" basis.

Low Frequency Oscillators (2) Generate repeating waves.

Envelope Generators (1) Generate a programmable volume or pitch contour which changes over time when a key is pressed.

FOOTSWITCH MODULATION

Changes a parameter when one of three MIDI footswitches are pressed. The footswitches can be programmed to switch: Sustain (pri/sec/both), Alternate Volume Envelope (pri/sec/both), Alternate Volume Release (pri/sec/both), or Cross-Switch between the primary and secondary instruments.

ENVELOPE GENERATORS

An envelope can be described as a "contour" which can be used to shape the sound in some way over time. Proteus FX contains two different kinds of envelope generators. One of the envelope generators, the Alternate Volume Envelope, controls the volume of the primary or secondary instrument and has 5 stages, Attack, Hold, Decay, Sustain, and Release. The other envelope, the Auxiliary Envelope, can be routed to any realtime control destination and is a general purpose envelope. The Auxiliary Envelope has 6 stages: Delay, Attack, Hold, Decay, Sustain, and Release. The Envelope parameters can be described as follows:

Delay

The time between when a key is played and when the attack phase begins.

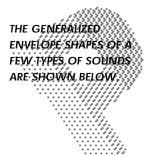
Attack

The time it takes to go from zero to the peak (full) level.

Hold

The time the envelope will stay at the peak level before starting the decay phase.

Decay

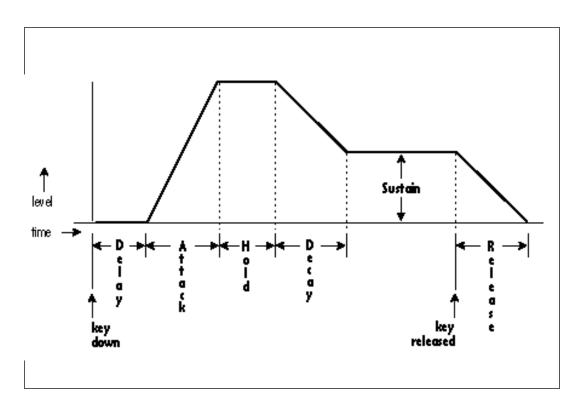

The time it takes the envelope to go from the peak level to the sustain level.

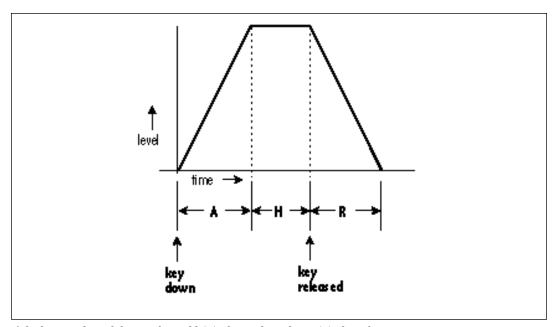
Sustain

The level at which the envelope remains as long as a key is held down.

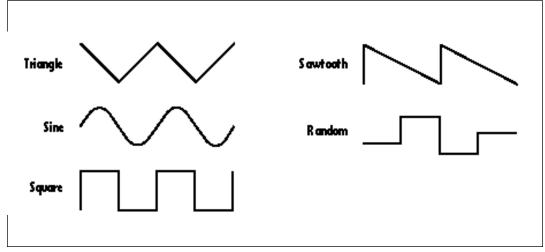
Release

The time it takes the envelope to fall to the zero level after the key is released.



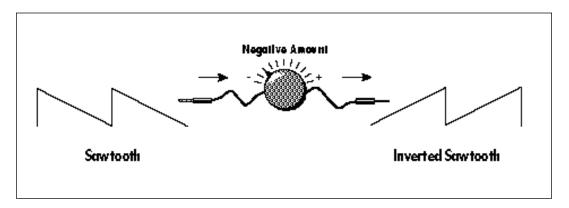


The six stages of the auxiliary envelope generator: Delay, Attack, Hold, Decay, Sustain and Release.



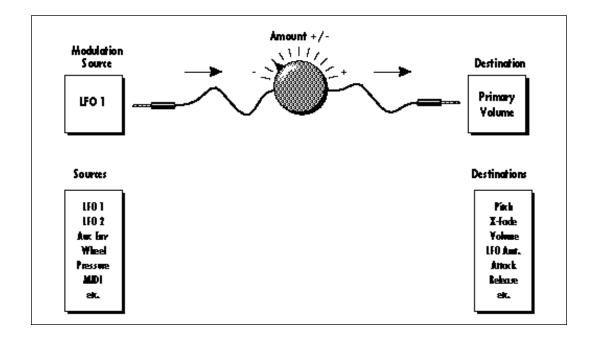
If the key is released during the Hold (H) phase, the Release (R) phase begins.

LOW FREQUENCY OSCILLATORS (LFOs) A Low Frequency Oscillator is simply a wave which repeats at a slow rate. Proteus FX has two multi-wave LFOs for each of its 32 channels. The LFO waveforms are: Triangle, Sine, Square, Sawtooth, and Random, which is a random "sample and hold" type of wave.

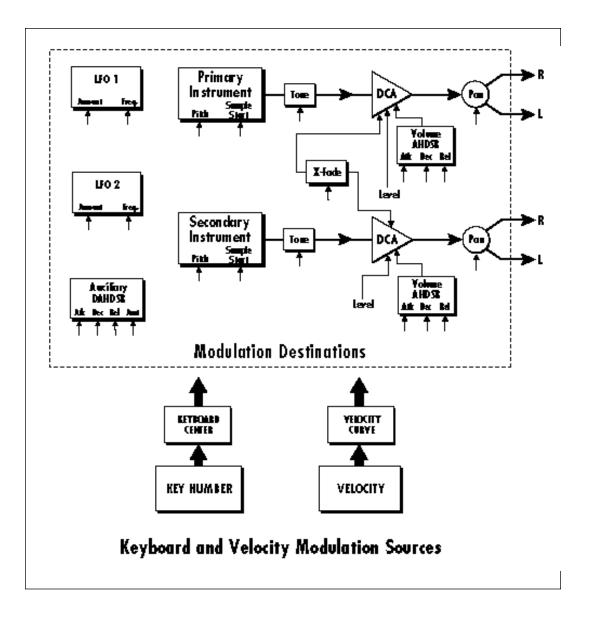

By examining the diagram of the LFO waveforms, you can see how the LFO will affect a modulation destination. Suppose

we are modulating the pitch of an instrument. The sine wave looks smooth, and will smoothly change the pitch. The square wave changes abruptly, and will abruptly change the pitch from one pitch to another. The sawtooth wave smoothly decreases, then abruptly changes back up. The sound's pitch will follow the same course. Controlling the pitch of an instrument is an easy way to hear the effects of the LFO waves.

LFO waveforms.

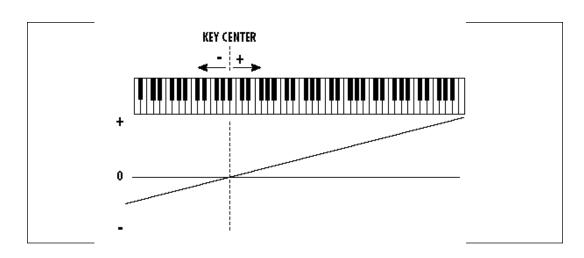

When the amount of an LFO is a negative value, the LFO shape will be inverted. For example, inverting the sawtooth wave produces a wave that smoothly increases, then instantly resets down.

MIDIPATCH


Connecting a modulation source to a destination is called a patch. Proteus FX lets you connect the modulation sources in almost any possible way to the modulation destinations. You can even modulate other modulators. Each patch also has an amount parameter which determines "how much" modulation is applied to the destination.

The modulation amount can be positive or negative and will either add or subtract from the initial value. Keyboard and velocity sources can be simultaneously patched to any 6 of the 33 destinations for each preset. Realtime modulation sources can be simultaneously patched to any 8 of the 24 destinations for each preset.

MODULATION SOURCES: KEY NUMBER KEY VELOCITY

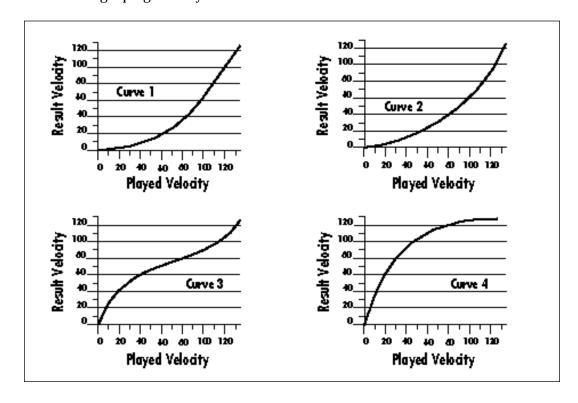

DESTINATIONS: PITCH, PRIMARY PITCH, SECONDARY PITCH, VOLUME, PRIMARY VOLUME, SECONDARY VOLUME, ATTACK, PRIMARY ATTACK, SECONDARY ATTACK, DECAY, PRIMARY DECAY, SECONDARY DECAY, RELEASE, PRIMARY RELEASE, SECONDARY RELEASE, CROSSFADE, LFO 1 AMOUNT, LFO 1 RATE, LFO 2 AMOUNT, LFO 2 RATE, AUX. ENVELOPE AMOUNT, AUX. ENVELOPE ATTACK, AUX. ENVELOPE DECAY, AUX. ENVELOPE RELEASE, SAMPLE START, PRIMARY SAMPLE START, SECONDARY SAMPLE START, PAN, PRIMARY PAN, SECONDARY PAN, TONE, PRIMARY TONE, **SECONDARY TONE**

THE TONE FILTER IS A
SIMPLE LOW PASS FONE
CONTROL WHICH CAN BE
USED TO DARKEN THE
TONE OF AN INSTRUMENT.

KEYBOARD & VELOCITY MODULATION
The Keyboard and Velocity Modulation
diagram shows the possible routings of
Key Number (which key is pressed), and
Velocity (how hard the key is pressed).
These modulation sources can control
any of the destinations indicated by the
small arrows. A modulation source can
control up to six destinations or one
destination can be controlled by up to six
modulation sources. The possible modulation routings are completely flexible as
shown in the example above.

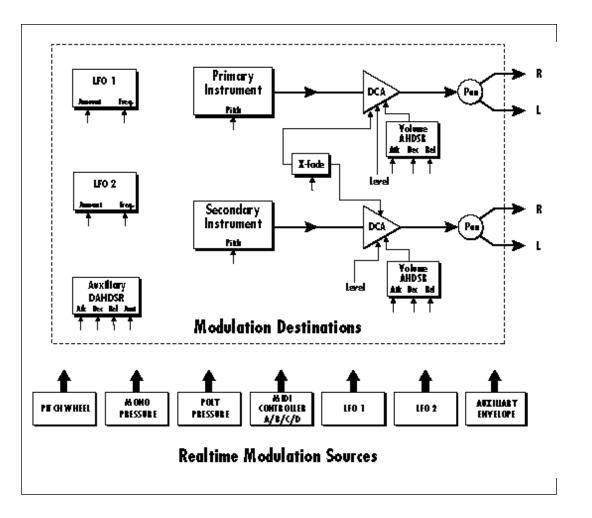
KEYS ABOVÉ THE
KEYBOARD CENTER POINT
WILL HAVE A POSITIVE
EFFECT: KEYS BELOW THE
KEYBOARD CENTER WILL
HAVE A NEGATIVE EFFECT.

KEY NUMBER


The Key Number is affected by the Keyboard Center parameter which can be set to any key from C-2 to G8. The keyboard center establishes a reference point for keyboard modulation; keys above this point will have a positive value, while keys below it will be negative. For example, if we wished to change the volume of an instrument using key number and the key center were set to middle C, the instrument would get progressively louder

above middle C and progressively softer below middle C.

VELOCITY CURVES

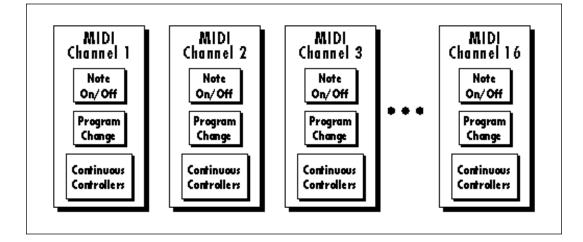

Incoming velocity values can be scaled by one of the four velocity curves in order to match your playing style or better adapt to the MIDI controller. Experiment with the four curves to find the one that works best for your style and MIDI controller.

CHOOSE THE VELOCITY
CURVE THAT WORKS BEST
FOR YOUR PLAYING STYLE
AND YOUR MID!
CONTROLLER.

MODULATION SOURCES:
PITCH WHEEL,
MIDI CONTROL A,
MIDI CONTROL B,
MIDI CONTROL C,
MIDI CONTROL D,
MONO PRESSURE,
POLYPHONIC PRESSURE,
LFO 1, LFO 2,
AUXILIARY ENVELOPE

DESTINATIONS: PITCH, PRIMARY PITCH, SECONDARY PITCH, **VOLUME, PRIMARY VOLUME,** SECONDARY VOLUME, ATTACK, PRIMARY ATTACK, SECONDARY ATTACK, DECAY, PRIMARY DECAY, SECONDARY DECAY, RELEASE, PRIMARY RELEASE, SECONDARY RELEASE, CROSSFADE, LFO 1 AMOUNT, LFO 1 RATE, LFO 2 AMOUNT, LFO 2 RATE, AUX. ENVELOPE AMOUNT, AUX. ENVELOPE ATTACK, AUX. ENVELOPE DECAY, **AUX. ENVELOPE RELEASE**

REALTIME MODULATION


In addition to keyboard and velocity modulation, Proteus FX has multiple realtime modulation sources. Realtime modulation sources are parameters which vary over time. The velocity and keyboard modulations, in comparison, are set at the key depression. The realtime modulation sources can control any of the destinations except Sample Start, Tone and Pan as indicated by the small arrows. A modulation source can control up to eight destinations or one destination can be controlled by up to eight modulation sources. The possible modulation routings are completely flexible as shown in the example above.

MIDI WIND CONTROLERS
MAY WORK BETTER IF YOU
ASSIGN ONE OF THE MID!
A, B, C, D CONTROLLERS TO
CONTROL VOLUME. THIS
WILL ALLOW THE MID!
VOLUME TO BE ADDED TO
THE CURRENT VOLUME.

MIDI REALTIME CONTROLS

The MIDI realtime controllers may seem confusing at first, but they are really very simple to understand. You probably already know that there are 16 MIDI channels that can be used. Each of the 16 MIDI channels uses basically 3 types of messages; note on/off, program changes, and continuous controller messages. Your MIDI keyboard, in addition to telling Proteus FX which note was played, may also send realtime control information, which simply means occurring in real time or live. (You may be using a MIDI device other than a keyboard, but for simplicity's sake we'll presume that

you're using a keyboard.) Realtime control sources include such things as pitch wheels or levers, modulation wheels or levers, control pedals, aftertouch, etc. and are used to add more expression or control. Your MIDI keyboard sends out realtime controller information on separate channels called continuous controller channels. There is a set of 32 continuous controller channels for each of the 16 MIDI channels. Some of the controller channels, such as pitch wheel, volume, and pan have been standardized. For example, volume is usually sent on continuous controller channel #7.

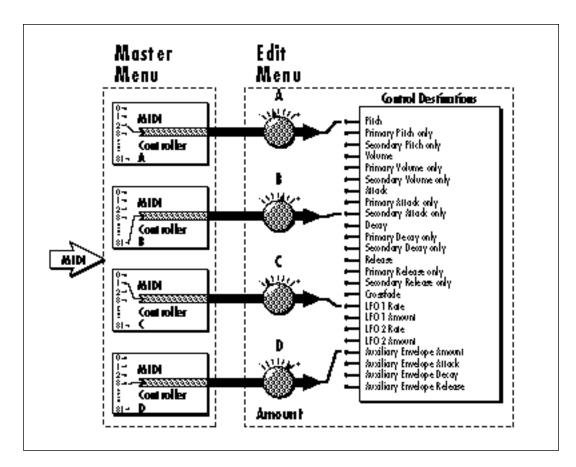
Common realtime controllers such as the pitch wheel, volume, pan and pressure are pre-programmed to their proper destinations. Your keyboard may have other realtime controls such as a control pedal or data slider which can also be programmed to control most of the parameters on Proteus FX.

Proteus FX is equipped with our sophisticated MidiPatchTM system, which allows you to route any continuous controller to any realtime modulation destination. The MidiPatch system is also very easy to use. First, you must know which controller numbers your keyboard can transmit.

STANDARD MIDI CONTROLLER NUMBERS:

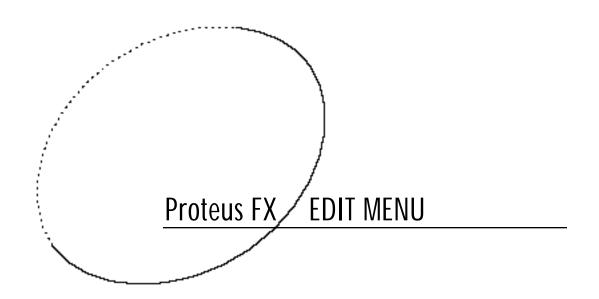
- 1- MODULATION WHEEL
- 2. BREATH CONTROLLER
- 3- PRESSURE REV 1 DX7
- 4- FOOT PEDAL
- 5- PORTAMENTO TIME
- 6- DATA ENTRY
- 7- VOLUME
- 8- BALANCE
- 9- UNDEFINED
- 10- PAN

As an example, imagine you are using a master keyboard which has pitch and modulation wheels, a breath controller, a data slider and a foot pedal, all of which transmit their values over MIDI. The standard MIDI controller numbers for the controls are listed below (the pitch wheel has a dedicated controller, PWH). First, we would go to the Master menu, MIDI Controller Assign and define the 4 MIDI controllers that we wish to use. Assign each controller number to one of the letters A-B-C-D.


01 - Modulation Wheel A

02 - Breath Controller B

04 - Foot Pedal C


06 - Data Entry D

To complete the connections for a particular preset, go to the Edit menu, Realtime Control, and route the MIDI A, B, C, D to the desired destinations. These could be patched to any 4 destinations or even to the same destination. The MIDI Controller Amount menu, (in the Edit menu) allows you to scale the amounts of each of the controllers by a positive or negative value. The signal flow is shown in the diagram below.

The MIDI controllers A-B-C-D must have both a source (0-31), and a control destination assigned.

6 The Edit Menu

WHILE THE EDIT MEND IS ACTIVATED, INCOMING MIDI PRESET CHANGES ARE IGNORED. THIS IS A QUICK AND EASY WAY TO TEMPORARILY TURN MIDI PRESET CHANGE OFF.

The Edit menu contains functions that can be modified by the user and then saved as preset information in one of the user presets. For example, the LFO speed or other parameter can be edited, then the preset can be saved to a user location (Banks 0 and 1).

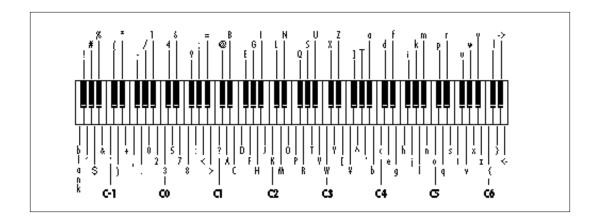
WARNING

Changes made in the Edit menu will be forever lost unless the preset is "saved" using the Save Preset function (page 78) before changing the preset.

TO ENABLE THE EDIT MENU Press the Edit button, lighting

Press the Edit button, lighting the LED. The current screen will be the one most recently selected since powering up the machine. The cursor will appear underneath the first character of the screen heading on line one.

TO SELECT A NEW SCREEN


Press the Home/Enter button or press a cursor button repeatedly until the cursor is underneath the screen heading. Rotate the Data Entry Control to select the screen.

TO MODIFY A PARAMETER

Press a cursor button repeatedly (or hold the right cursor button while turning the data entry control) until the cursor is underneath the parameter value. Rotate the data entry control to change the value.

TO RETURN TO PRESET SELECT MODE Press the Edit button, turning off the LED.

Edit Menu Functions

PRESET NAME

Preset Name allows you to name each of the user presets with a name of up to 12 characters. Position the cursor under the character location and use the data entry control to change the character. The keyboard can also be used to select characters. The chart above shows the keyboard character assignment.

PRESET NAME 000 Untitled

PRIMARY INSTRUMENT

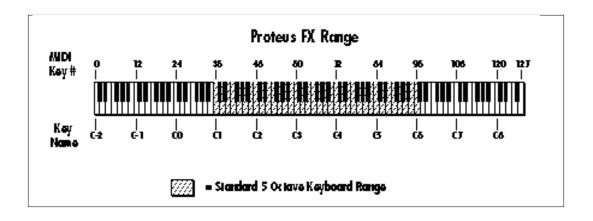
This function allows you to select which of the available instrument sounds (or none) will be placed on the primary layer of the current user preset.

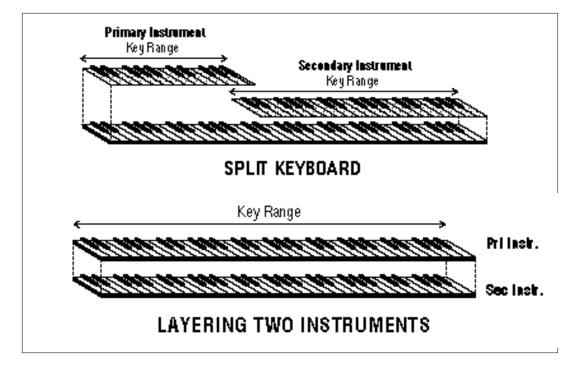
> INSTRUMENT pri IOO2 Piano Pad

SECONDARY INSTRUMENT

This function allows you to select which of the available instrument sounds (or none) will be placed on the secondary layer of the current user preset.

INSTRUMENT sec I 001 Pi ano


KEY RANGE


Key range sets the keyboard range of both primary and secondary instruments. This sets the keyboard range for the entire preset and will further limit the primary and secondary keyboard ranges. The key range can be set anywhere from C-2 to G8.

KEY RANGE C-2 -> G8

CHANGING THE
INSTRUMENT IS A SIMPLE
WAY TO GREATE A NEW
SOUND WHILE RETAINING
ALL THE OTHER PARAMETERS
OF THE PRESET.

ENTIRE PRESETS CAN BE LINKED TO FORM SPLIT OR LAYERED PRESETS. SEE THE LINK FUNCTION AT THE END OF THIS CHAPTER.

PRIMARY KEY RANGE

Key range sets the keyboard range of the primary instrument. This is useful for creating positional crossfades and keyboard splits between the primary and secondary layers. The key range can be set anywhere from C-2 to G8.

KEY RANGE pri C-2 -> CO

SECONDARY KEY RANGE

Key range sets the keyboard range of the secondary instrument. The key range can be set anywhere from C-2 to G8.

KEY RANGE sec C#O -> G8

VOLUME

Volume sets the amplitude of the primary and secondary instruments. This function also allows you to compensate for the relative volume differences between instruments.

VOLUME

pri: 127 sec: 64

PAN

Pan allows you to independently set the initial pan position of the primary and secondary instruments. A value of -7 pans the instrument hard left and a value of +7 pans the instrument hard right. This pan setting is only valid if "P," for preset pan, is selected in the main display.

PAN

pri:-7 sec:+7

FX MIX SELECT

This function allows you to direct a particular preset to one of the effect processors (FxA, FxB) or leave the preset Dry-no effects (Main). This routing is utilized if Mix Select for a particular MIDI channel is set to "Preset" in the Master menu. Otherwise this parameter is ignored. This function allows you to choose the effect bus in the preset rather than by MIDI channel.

FX MIX SELECT FxA

COARSE TUNING

This function allows you to change the tuning of the primary and secondary instruments in semitone intervals. The coarse tuning range is -36 to +36 semitones. A coarse tuning setting of "00" would indicate that the instrument is tuned to concert pitch (A=440 Hz).

TUNING coarse

pri: +00 sec: +00

FINE TUNING

This function allows you to change the tuning of the primary and secondary instruments in 1/64 semitone intervals (approx. 1.56 cents). The fine tuning range is \pm 1 semitone.

TUNING fine

pri: +00 sec: +00

CHORUS

Chorus "thickens" the sound by doubling the sound and then detuning it. Chorus can be turned On or Off for the primary and secondary instruments. When Chorus is on, a particular instrument will use twice as many channels. If Chorus is used for both primary and secondary instruments, the preset will use four channels per key which correspondingly reduces the available polyphony.

CHORUS

pri:0ff sec:0n

IN ORDER FOR THE FX MIX
SELECT FO BE UTILIZED, THE
FX MIX SELECT FOR THE MIDI
CHANNEL (IN THE MASTER
MENU) MUST BE SET TO
PRESET.

DELAY

Delay varies the time between the arrival of a MIDI Note On message and the onset of a note. The delay time is adjustable from 0 to 14 seconds (000-127).

DELAY

pri:000 sec:000

SOLO MODE

Solo mode provides the playing action of a monophonic instrument with single triggering and last-note priority. This mode does not allow you to play a chord. Solo mode will not retrigger the envelope generators if a new note is played while another is being held. This allows a legato playing technique to be used. Solo mode also provides more realistic effects when working with guitar and wind controllers.

SOLO MODE

pri:0ff sec:0n

SOUND START

This function allows you to set where a sample begins playing when you hit a key. A setting of 000 plays a sound from the beginning, higher values move the sample start point toward the end of the sound.

SOUND START

pri: 000 sec: 000

REVERSE SOUND

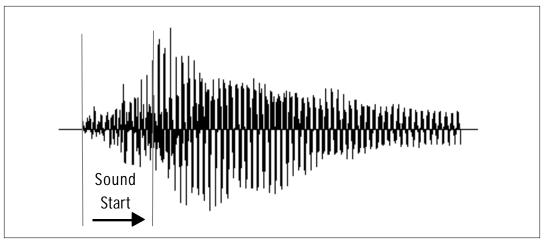
When reverse sound is turned On, the instrument will be played backwards. When an instrument is reversed, any loops in the sound will be ignored, which means that the sound will not sustain indefinitely.

REVERSE SOUND pri: Off sec: On

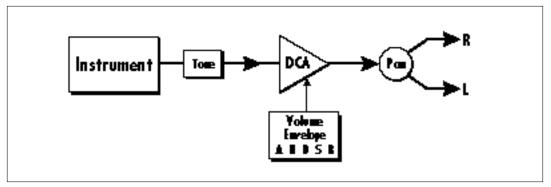
THE SOUND START

PARAMETER CAN BE USEFUL

TO REMOVE THE GRADUAL


ATTACK OF A REVERSED

SOUND: SEE THE STEP BY


STEP CHAPTER FOR AN

APPLICATION USING

SOUND START:

The Sound Start parameter allows you to cut off the beginning of the sound. Higher values move the start point toward the end of the sound.

The Alternate Volume Envelope dynamically controls the final output and can completely change the character of a sound.

ALTERNATE ENVELOPE ON/OFF

Each instrument has its own factory preset AHDSR volume envelope which is used if this parameter is set to Off. Turn Alternate Volume Envelope On to use the user-programmable alternate envelope instead.

ALT ENVELOPE

pri:0ff sec:0n

PRIMARY & SECONDARY ALTERNATE ENVELOPE PARAMETERS

These functions allow you to adjust the alternate volume envelope parameters for the primary and secondary instruments. The parameters are Attack time, Hold time, Decay time, Sustain level, Release time, and are adjustable from 00 to 99.

P: A H D S R 00 00 00 99 16

S: A H D S R 00 00 00 99 16

CROSSFADE MODE

This function determines which of the following crossfade modes will be selected: Off, Crossfade, or Cross-Switch.

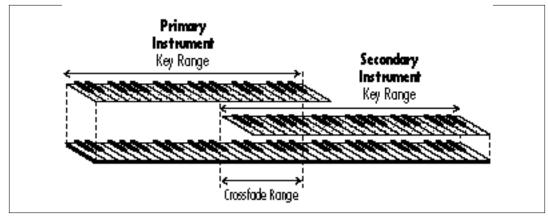
Off

When "Off" is selected, none of the crossfade parameters will have any effect.

Crossfade

When Crossfade mode is selected, a control input is used to fade between the primary and secondary. Any modulation source may be used as a control input (velocity, LFO, etc.).

Cross-switch


When Cross-switch mode is selected, the switched layer is selected if the input crosses a certain threshold or if a footswitch controlling cross-switch is activated. The switch occurs only at the start of the note; no further switching takes place while the key is held down.

If key position or velocity is routed to cross-switch, the threshold is the switch point. Realtime controllers do not have any effect when routed to cross-switch. For more information, see Cross-Switch Point on page 72.

XFADE MODE

TO ENABLE THE
CROSSFADE OR CROSSSWITCH FUNCTIONS,
YOU MUST ASSIGN
CROSSFADE TO A
MODULATION SOURCE
IN EITHER THE REALTIME
OR KEY/VELOCITY
MODULATION SCREENS.

TO USE THE KEYBOARD FOR CROSSFADE, SET THE CROSSFADE BALANCE TO 64 AND THE KEY CENTER TO THE SPUT POINT.

By overlapping the primary and secondary instruments, you can crossfade or cross-switch between the layers.

SEE ALSO CROSS SWITCH POINT ON THE FOLLOWING PAGE: The crossfade and cross-switch functions MUST be connected to a controller in either the Key/Velocity or Realtime Modulation screens. (Otherwis, what is controlling the crossfade?)

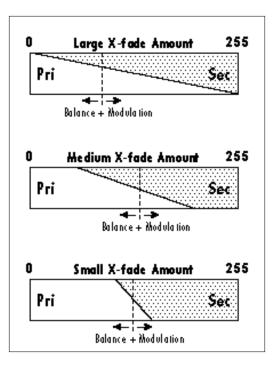
CROSSFADE DIRECTION

This function determines the polarity of the crossfade or cross-switch. The direction is either primary -> secondary, or secondary -> primary.

XFADE DI RECTI ON Pri -> Sec

A CROSSFADE BALANCE
SETTING OF GOO WOULD BE
APPROPRIATE WITH A
SOURCE SUCH AS A
MODULATION WHEEL OR
FOOTPEDAL, EITHER OF
WHICH CAN ONLY
CHANGE THE VALUE IN A
POSITIVE DIRECTION.

CROSSFADE BALANCE


The crossfade balance parameter determines the initial balance between the primary and secondary layers. Any modulation is subsequently added to this value. Crossfade balance is variable between 000 and 127.

XFADE BALANCE 064

CROSSFADE AMOUNT

The crossfade amount parameter determines the range over which crossfading will occur. Crossfade amount is variable from 000 to 255. The larger the value, the more modulation will be required to effect a complete crossfade.

XFADE AMOUNT 128

TO ENABLE THE CROSSSWITCH FUNCTION, YOU
MUST ASSIGN
CROSSFADE TO A
MODULATION SOURCE
IN THE REALTIME OR
KEY/VELOCITY SCREENS.

Velocity

CROSS-SWITCH POINT

The cross-switch point parameter determines the point at which cross-switching will occur when key position or velocity is controlling cross-switch.

SWI TCH POI NT 064 (E3) Key

FOR MORE INFORMATION ON THE 1605, SEE THE PRESET PROGRAMMING CHAPTER OF THIS MAINWAL.

LFO 1 - SHAPE AND AMOUNT

This screen controls the waveshape and amount of Low Frequency Oscillator 1. The LFO can be used to produce vibrato (when routed to pitch), or tremolo (when routed to volume). The five LFO waveshapes are: Triangle, Sine, Square, Sawtooth, and Random. The amount can be varied from -128 to +127. Negative values will produce inverted waveshapes.

LF01 SHAPE AMT Rand +127

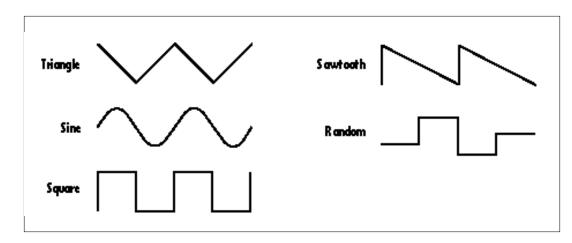
LFO 1 - RATE, DELAY AND VARIATION This screen controls the rate, delay and variation of LFO 1.

LFO Rate

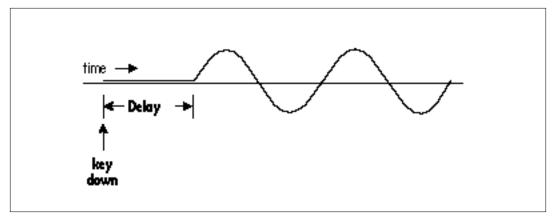
Varies the LFO speed from 0.052 Hz to 25 Hz (000-127).

LFO Delay

Sets the amount of time between hitting a key and the onset of modulation. This can be used to simulate an effect often used by acoustic instrument players, where the vibrato is brought in only after the initial note pitch has been established. The delay range is variable from 0 to 13 seconds (000-127).


LFO Variation

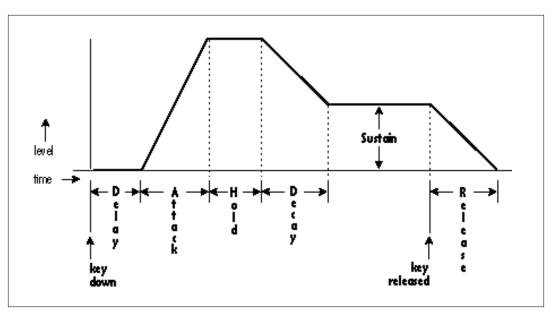
Sets the amount of random variation of an LFO each time a key is pressed. This function is useful for ensemble effects, where each note played has a slightly different modulation rate. The higher the number, the greater the note to note variation in LFO rate. LFO variation is variable from 000-127.


LF01 RT DLY VAR 000 000 000

LFO 2 - SHAPE AND AMOUNT LFO 2 is functionally identical to LFO 1.

LFO 2 - RATE, DELAY AND VARIATION LFO 2 is functionally identical to LFO 1.

Delayed LFO - The LFO wave begins after the specified delay time has elapsed.



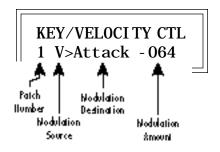
AUXILIARY ENVELOPE

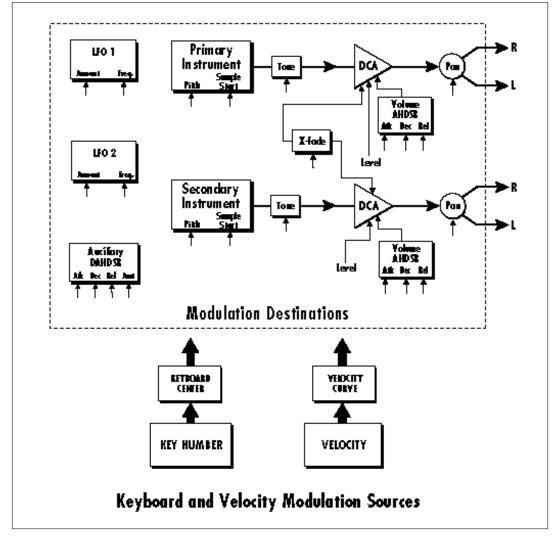
This is a supplementary, utility envelope that can be routed to any realtime control destination. The auxiliary envelope parameters are: Envelope Amount, Delay, Attack Time, Hold Time, Decay Time, Sustain Level, and Release Time. The delay time is variable from 0 to 13 seconds (000-127). The envelope amount is variable from -128 to +127. Negative values will produce inverted envelopes.

AUX ENV AMT DLY +127 000

A: A H D S R 00 00 00 99 20

The six stages of the Auxiliary Envelope Generator.


MODULATION SOURCES: KEY NUMBER KEY VELOCITY


DESTINATIONS: PITCH, PRIMARY PITCH, SECONDARY PITCH, **VOLUME, PRIMARY VOLUME,** SECONDARY VOLUME, ATTACK, PRIMARY ATTACK, SECONDARY ATTACK, DECAY, PRIMARY DECAY, SECONDARY DECAY, RELEASE, PRIMARY RELEASE, SECONDARY RELEASE, CROSSFADE, LFO 1 AMOUNT, LFO 1 RATE, LFO 2 AMOUNT, LFO 2 RATE, AUX. ENVELOPE AMOUNT, AUX. ENVELOPE ATTACK, AUX. ENVELOPE DECAY, AUX. ENVELOPE RELEASE, SAMPLE START, PRIMARY SAMPLE START, SECONDARY SAMPLE START, PAN, PRIMARY PAN, SECONDARY PAN, TONE, PRIMARY TONE,

SECONDARY TONE

THE TONE FILTER IS A
SIMPLE LOW-PASS TONE
CONTROL WHICH CAN BE
USED TO DARKEN THE
TONE OF AN INSTRUMENT.

KEYBOARD & VELOCITY MODULATION These functions allow you to route keyboard and velocity information to any of the modulation destinations on the Proteus FX. Up to 6 simultaneous paths or "patches" may be programmed. For each modulation patch, there is a source (keyboard or velocity), and a corresponding amount parameter which is variable from -128 to +127. Place the cursor under the appropriate parameter and change the patch number, modulation source, modulation destination, or the amount using the data entry control. If a parameter is not labeled either primary or secondary, it will affect both.

MODULATION SOURCES:
PITCH WHEEL,
MIDI CONTROL A,
MIDI CONTROL B,
MIDI CONTROL C,
MIDI CONTROL D,
MONO PRESSURE,
POLYPHONIC PRESSURE,
LFO 1, LFO 2,
AUXILIARY ENVELOPE

REALTIME MODULATION CONTROL
These functions allow you to route
realtime controllers to any of the modulation destinations on Proteus FX except
Tone, Sample Start, and Pan. Up to 8
simultaneous patches may be programmed. For each modulation patch,
there is a source and a destination

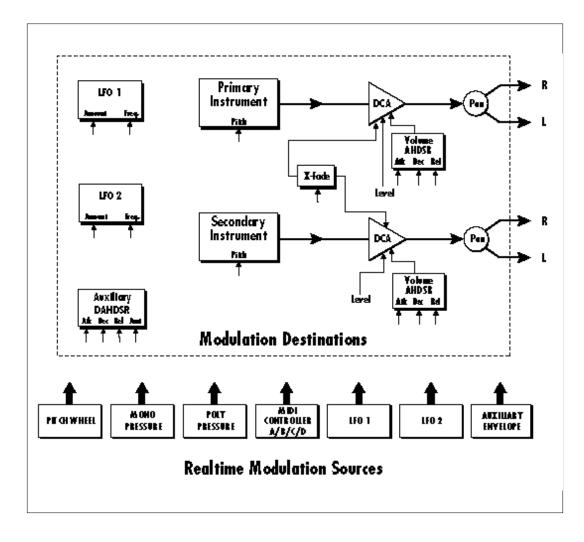
parameter. Place the cursor under the appropriate parameter and change the patch number, modulation source or modulation destination using the data entry control. If a parameter is not labeled either primary or secondary, it will affect both.

DESTINATIONS: PITCH, PRIMARY PITCH, SECONDARY PITCH, VOLUME, PRIMARY VOLUME, SECONDARY VOLUME, ATTACK, PRIMARY ATTACK, SECONDARY ATTACK, DECAY, PRIMARY DECAY, SECONDARY DECAY, RELEASE, PRIMARY RELEASE, SECONDARY RELEASE, CROSSFADE, LFO 1 AMOUNT, LFO 1 RATE, LFO 2 AMOUNT, LFO 2 RATE, AUX. ENVELOPE AMOUNT, AUX. ENVELOPE ATTACK,

REALTIME CTL

1 LF01 ->Pitch

Patch
Humber Destination


Nodulation
Source

WHEN MODULATING ENVELOPE ATTACK DECAY OR RELEASE TIMES:

AUX. ENVELOPE DECAY, AUX. ENVELOPE RELEASE

POSITIVE AMOUNTS OF MODULATION INCREASE THE TIME.

NEGATIVE AMOUNTS OF MODULATION DECREASE THE TIME.

FOOTSWITCH CONTROL

This function allows you route the 3 footswitch controllers to any of the footswitch destinations. The footswitches can be routed to switch: Sustain (pri/sec/both), Alternate Volume Envelope (pri/sec/both), Alternate Volume Release (pri/sec/both), or Cross-switch between the primary and secondary instruments.

FOOTSWITCH CTL 1 -> Sustain

PITCH BEND RANGE

This function allows you to specify the pitch wheel range for the current preset or it can be set to be controlled globally (set in the Master menu). Pitch bend range is only applied when the pitch wheel is used to control pitch.

PITCH BEND RANGE ± 12 semitones

MIDI CONTROLLER AMOUNT

This function allows you to specify an amount parameter (variable from -128 to +127) for each of the MIDI controllers.

CONTROLLER AMT A: +127 B: -090

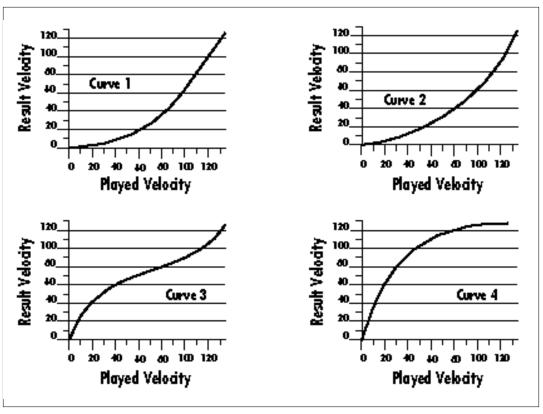
CONTROLLER AMT C: +127 D: - 090

PRESSURE AMOUNT

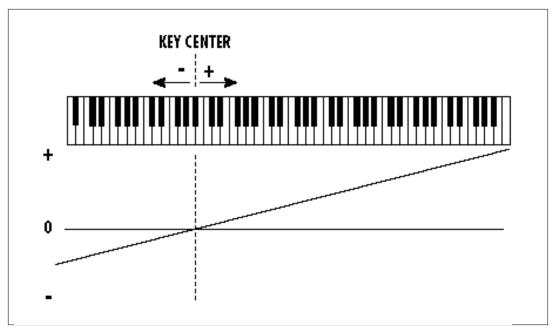
This function allows you to specify an amount parameter for mono or poly keyboard pressure data (aftertouch). The pressure amount is variable from -128 to +127.

PRESSURE AMOUNT +127

VELOCITY CURVE


Incoming velocity data can be modified by a velocity curve in order to provide different types of dynamics in response to your playing or better adapt to the MIDI controller. This function allows you to select one of the four velocity curves or leave the velocity data unaltered (Off). In addition, the velocity curve can be set to Global, which means that the global velocity curve (programmed in the Master menu) is used.

VELOCITY CURVE Gl obal


KEYBOARD CENTER

The Keyboard Center parameter establishes a reference point for keyboard modulation. Keys above this point will have a positive value and keys below it will be negative. The keyboard center can be set to any key within the range A-1 to C7.

KEYBOARD CENTER C#3

Choose the velocity curve that works best for your playing style and your MIDI controller.

Above the Keyboard Center point, key values will be positive; below the Keyboard Center, key values will be negative.

KEYBOARD TUNING

In addition to the standard equally divided octave tuning, Proteus FX contains four other types of scale tuning and one user-definable tuning. This function selects which tuning will be used in the current preset. The available tunings are:

Equal tuning 12-tone equal temperament (Standard Western tuning)

Just C tuning
Just intonation
(Based on small interval ratios; sweet and
pure; non-beating intervals)

Vallotti tuning

Vallotti & Young non-equal temperament (Similar to 12 tone equal temperament; for a given scale, each key has a different character)

19 Tone tuning 19-tone equal temperament (19 notes per octave; difficult to play but works well with a sequencer)

Gamelan tuning
Javanese tuning: 5-tone Slendro and
7-tone Pelog
(Pelog-white keys; Slendro-black keys
Exotic tunings of Gamelan flavor)

User tuning Defined in the Master menu.

KEYBOARD TUNI NG Equal

PRESET LINKS

Presets may be linked to other presets in order to create layering or keyboard splits. The current preset can be linked with up to three other presets. Each linked preset can be assigned to a specific range in order to easily create keyboard splits. The modulation parameters specified in each preset remain in effect for each preset in the link.

LINK 1 C-2->F#4 000°Preset Name


LINK 2 C#1->F#4 127³ Preset Name

LINK 3 Off

SAVE PRESET

Changes made to a preset in the Edit menu are not made permanent until the preset is Saved. To save a preset, move the cursor to the bottom line and select the location for the new preset with the data entry control. The Enter LED will be flashing. Pressing the Enter switch will confirm the operation. Any user preset (Banks 0 and 1) may be selected using the data entry control. Writing to a user preset erases the existing preset in that location. Make sure that the destination preset does not contain information that you want to keep.

SAVE PRESET to 064° Preset Name

7 Step-By-Step

This section is an introduction to the Edit menu, explains the concept of Proteus Synthesis, and contains specific programming examples and tips.

LINKING PRESETS

Linking presets is a quick and easy way to create new sounds by "layering presets" and also to "split" the keyboard into sections containing different sounds.

LAYERING TWO PRESETS

- 1) Select the first preset you wish to layer.
- 2) Press the Edit button.
- 3) Use the data entry control to move through the screens until you find one of the "LINK" screens.
- 4) Move the cursor to the second line of the display, then select the preset that you want to be linked with this preset. You may want to play the keyboard as you scroll through the various presets in order to hear the results.
- 5) If you want the link to be a permanent part of the preset, be sure to "SAVE PRESET".

CREATE A SPLIT KEYBOARD USING LINKS

- 1) Follow steps 1 through 4 at left.
- 2) Now set the range of the linked preset while still in the LINK menu. Press Enter.
- 3) Now use the data entry control to move through the screens to KEY RANGE.
- 5) Set the range of the preset so that it fills the remaining range of your keyboard.
- 6) Save the preset.

EDITING PRESETS

The easiest way to make a preset is to edit an existing preset. This is also an excellent way of becoming familiar with Proteus FX. If you don't like what you hear, simply change the preset and Proteus FX reverts back to the original sound. Changes are not made permanent until you Save them using the "SAVE PRESET" function, which is the last screen in the Edit menu. Let's experiment and modify a few parameters of an existing preset. We'll start with functions that have an obvious effect on the sound like Instrument select, Coarse Tuning, Chorus, and Reverse Sound.

First, choose a preset that strikes your fancy and press the Edit button.

CHANGING THE INSTRUMENT

This is probably the easiest way to modify existing presets. Scroll through the Edit menu functions until you come to:

> INSTRUMENT pri IXXX Instr Name

Move the cursor down to the bottom line (using the cursor button) and change the primary instrument with the data entry control. Play the keyboard as you scroll through the various instruments. When you find an interesting instrument, move the cursor back up to the first line and select:

INSTRUMENT sec IXXX Instr Name Repeat the process for the secondary instrument. Find an instrument that sounds good when combined with the first one you selected. You can probably see that with all these great instruments to work with, you really can't go wrong. Now let's play with the tuning.

CHANGING THE TUNING OF AN INSTRUMENT

Scroll through the Edit menu functions until you come to:

TUNING coarse pri: +00 sec: +00

If the numbers are "00" as in the example above, it means that the instruments are tuned to concert pitch (A=440 Hz). Each whole number in coarse tuning represents a semitone interval. To tune one or both of the instruments up an octave, move the cursor to the number (using the cursor button) and set the number to +12 using the data entry control. Try tuning one of the instruments to a perfect fifth above the other. Simply set the coarse tuning to +7.

CHORUS

This is an easy one. With the cursor on the top line of the display, turn the data control until you find CHORUS. Chorus can be turned on or off for each of the primary and secondary instruments. Chorus works by doubling the instruments and detuning them slightly. Try it.

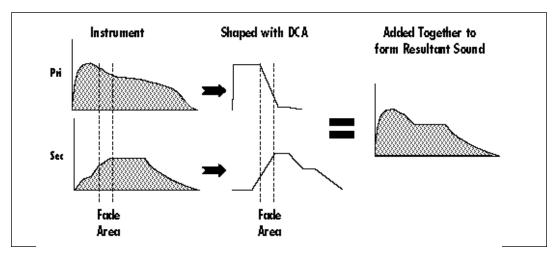
CHORUS

pri: 0ff sec: 0ff

REVERSING THE SOUND

A simple concept. The instrument sounds can be played in reverse. This will normally make an instrument sound quite a bit different. It also virtually doubles the number of raw instruments you have to work with, and it's fun.

REVERSE SOUND pri:Off sec:Off


You're probably getting the idea by now. Remember not to change presets or the preset will return to normal. If you want to save your creation, select the last screen in the Edit menu and select a destination preset location for your masterpiece, then press Enter. That's it.

The previous examples were offered solely to pique your curiosity. By all means, go ahead and experiment with any of the other functions. Some of the best sounds have been discovered by accident. If it sounds good ... Do it!

PROTEUS SYNTHESIS

Oh, no! Not another form of synthesis to learn. Relax. It's easy. Proteus Synthesis is actually just a form of additive synthesis. Only, instead of building a sound from simple sine waves, Proteus FX starts with complete sampled sounds or complex waveforms and combines all or part of these together to form a new sound. The process is illustrated below.

The envelope generators controlling the DCAs (digitally controlled amplifiers) can be used to fade between two instruments (primary and secondary) during the course of a note. This powerful technique allows you to combine elements of different instruments together to form completely new sounds. New sounds that are totally natural, because they are based on natural sounds. Proteus FX also contains many digitally generated waveforms that can be combined with other digital waves or with sampled instruments in order to change the character of the sound, perhaps to add a digital "edge" or add more bottom. In addition to the envelope generators, parameters such as Delay, Sample Start, and Crossfade allow you to further control the blend of primary and secondary instruments.

Portions of two sounds are dynamically crossfaded in order to produce a new sound containing elements of both.

AN EXAMPLE

As an example, let's combine the electric guitar and a synthesized waveform to create a new instrument. Refer to the Edit menu parameters in the chart below. The Electric Guitar is the basic sound and is augmented by a chorused, synthesized wave which adds a digital sheen. Note that the guitar has a slower attack, which completely changes its character. Basically, the attack of the guitar has been replaced by the synthesized wave. In addition, the guitar is tuned up one octave and the two sounds have been panned to different positions in the stereo field.

AN	OTHE	RFXA	MPLF

As another example, we'll use the attack portion of the Soft Flute and the sustain portion of the Tenor Sax as raw material. This time we will use the Delay and Sample Start parameters as well as the Alternate Envelopes to blend the two instruments.

The attack portion of the secondary instrument is removed using the sample start parameter and then delayed slightly so it will sound only after the flute attack portion begins to decay. The alternate envelopes are used to "fine tune" the splice. Furthermore, the flute attack has been detuned a bit sharp so the composite sound will start sharp and fall into correct pitch.

Continue your experiments using this example, but changing the primary and secondary instruments. When you have found a good combination, "fine tune" the delay, sample start, volume and envelope parameters. Feel free to play with the modulation parameters as well.

Primary	Secondary	
Instrument: Oct. 7 All	Instrument: El. Guitar	
Alt Envelope: On	Alt Envelope: On	
A H D S R 00 00 51 00 36	A H D S R 05 05 27 88 44	
Volume: 45	Volume: 88	
Chorus: On	Chorus: Off	
Tuning: +00	Tuning: +12	
Parc +2	Parc -2	

Primary	Secondary	
Instrument: Soft Flute	Instrument: Tenor Sax	
Alt Envelope: On	Alt Envelope: On	
A H D S R 04 02 16 00 16	A H D S R 06 00 38 85 40	
Volume: 109	Volume: 88	
Fine Tuning: +05	Fine Tuning: +00	
Tuning: +12	Tuning: +12	
Delay: 000	Delay: 02	
Sound Start: 000	Sound Start: 040	

USING PROTEUS FX WITH A SEQUENCER

We thought you'd never ask. Proteus FX was designed from its conception with multi-timbral sequencing in mind. Just take a look at the main screen.

C01 Vol 127 Pan+0 000° Preset Name

The preset for each MIDI channel is selected from the main screen. Press the cursor button to move the cursor up so that it is underneath the channel number.

C01 Vol 127 Pan+0 000° Preset Name

Turn the data entry control and you will see that every MIDI channel has a preset assigned to it. Just select a preset for each of the MIDI channels. It's simple! In order to respond to multiple MIDI channels, Proteus FX must be in Multi-Mode. Multi-Mode is selected in the Master menu. Press the Master menu button and use the data entry control to scroll through the screens until you find MIDI MODE.

MI DI MODE I D Multi 00

Move the cursor down to the second line and change the mode to Multi as shown. Proteus FX will now respond to multiple MIDI channels.

MORE ADVANCED SEQUENCING

Pre-Sequence Setup

Suppose that you want to have your sequencer set up everything for you before the start of the song. Good idea. This will make the Proteus FX setup procedure automatic and prevent the wrong presets from playing.

The basic idea of a pre-sequence setup is to send out MIDI information just before the start of the song. This MIDI information will select all the proper presets, adjust the mix, and pan positions of each preset.

Note: Proteus FX setup information should be transmitted from the sequencer before the song actually starts, perhaps during a lead-in measure or countdown. DO NOT send setup information just before the first beat of the song or MIDI timing errors could result.

Initial Setup
In the Master menu:

- 1) Turn ON Multi-Mode
- 2) Turn ON Preset Change enable for each channel.
- Turn OFF MIDI Enable on MIDI channels that are to be used for other synthesizers.

PRESET, VOLUME & PAN SETUP Program your MIDI sequencer to transmit the following information before the song starts.

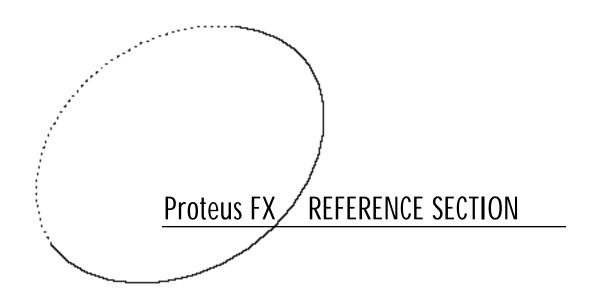
- Select the proper presets for each MIDI channel used on Proteus FX.
- 2) Send MIDI volume information (controller #7) for each MIDI channel used on Proteus FX.
- 3) Send MIDI pan information (controller #10) for each MIDI channel used on Proteus FX.

Now your song will play perfectly every time using the proper presets, volumes and pan positions. In addition, presets, volumes and pan positions (or anything else for that matter) can be adjusted in realtime during the song. Note: If the wrong presets are being selected, check the MIDI Program -> Preset Map.

To carry the pre-sequence setup even further, you can even include preset data for each preset used in the sequence. See page 27 for details.

USING THE 32 CHANNELS

As stated earlier, Proteus FX has 32 independent audio channels which are utilized as needed. With 32 channels and 512 presets, you have a universe of sonic textures at your disposal. But you have probably noticed that many of the best sounding presets in Proteus FX are linked with other presets or have chorus applied to them in order to make them sound larger. While this is fine when the preset is played solo, you may begin to run out of channels when Proteus FX is played multi-timbrally. Linking and chorusing cause twice as many channels to be used by the preset. Learn to "budget" your output channels for maximum efficiency.


CHANNEL RIPOFF

When Proteus FX uses up all its 32 channels and needs more, it steals a channel from the key that has been held the longest. This is commonly known as "channel ripoff". You will most commonly encounter this ripoff when using Proteus FX in multi-timbral mode. To eliminate ripoff you must either, play fewer notes, use simpler sounds, turn off doubling (pri/sec, chorus, or linked presets), or use MIDI overflow to another Proteus FX.

INSTRUMENT DEFINITION

If your sequence has an instrumental section using numerous chord it may be advantageous to use a basic preset without links or chorus. A preset will sound much different alone than when combined with an ensemble. Try to resist the temptation to make every sound as fat as possible or you can wind up with "MIDI Soup", a huge, stifling sound with every possible audio frequency filled. A solo saxophone in a band isn't chorused and it sounds great. Each voice in your composition should have it's own identity. Save the monster sounds for solos or dramatic effects.

RAM Presets Bank 0

Keyboards	0. kbd:GrandPno		43. str:Soloists		86. led:BuzzSolo
·	1. kbd:Heaven		44. str:PizzViol		87. led:FuseHorn
	2. kbd:TinePno*		45. str:PizzCeli	Synth	88. pad:Dark Syn
	3. kbd:7ftGrand		46. str:8va Pizz	Pads	89. pad:Spiritu
	4. kbd:ElGrand1		47. str:Quartet		90. pad:RoxyMuse
	5. kbd:Roadz 1	Ensemble	48. ens:Xpresive		91. pad:Kryonite
	6. kbd:Tine EP		49. ens:Orchstra		92. pad:DeString
	7. kbd:Claved		50. ens:Moody		93. pad:CosmoMan
Chromatic	8. prc:Marimba		51. ens:Symphony		94. pad:Guidance
Percussion	9. prc:Vibe>Mod		52. ens:VoxHuman		95. pad:Dynalog
	10. prc:TimbaMal		53. ens:Str&Vox	Synth	96. syn:Krystala
	11. prc:Javanese		54. ens:Choir	Sounds	97. syn:Iron Man
	12. prc:Celeste		55. ens:OBString		98. syn:Flashbak
	13. prc:Trinidad	Brass	56. brs:HdTrumpt		99. syn:Phantazi
	14. prc:Carillon		57. brs:MutedTpt		100. syn:RingHard
	15. prc:Glock		58. brs:Trombone		101. syn:Zoundz
Organs	16. org:VintgeB3		59. brs:Fr Horns		102. syn:Watering
or gans	17. org:That B3		60. brs:Section*		103. syn:Glisando
	18. org:Be Vocal		61. brs:Full On*	Ethnic	104. eth:JamSteel
	19. org:Rock #2		62. brs:VelFalls		105. eth:Kyoto
	20. org:3rd Perc		63. brs:Layers		106. eth:Metalia
	21. org:PureTone	Reeds	64. red:SteroSax		107. eth:KingCong
	22. org:Synthgan		65. red:"G" Sax		108. eth:Dulcimer
	23. org:Tarkus		66. red:Bari Sax		109. eth:Balinese
Guitars	24. gtr:EcoStrat		67. red:Soprano		110. eth:Far East
	25. gtr:ClenStrt		68. red:TwinMood		111. eth:Sitari *
	26. gtr:Acoustic		69. red:Eng Horn	Percussion	112. drm:RockKit1
	27. gtr:12String		70. red:DblSectn		113. drm:Wacky
	28. gtr:CombPad*		71. red:Oboe		114. drm:SteroKit
	29. gtr:Funky	Pipes	72. pip:VerbFlut		115. drm:SynthKit
	30. gtr:Mutes	'	73. pip:Whistle		116. drm:Snares
	31. gtr:Lazy G		74. pip:ButtrFlu		117. drm:Kicks
Bass	32. bas:Miracle		75. pip:Calliope		118. drm:Cymbals
	33. bas:& Harms		76. pip:Herble		119. drm:Tamborin
	34. bas:Jazzer		77. pip:SynthVox	Special	120. sfx:Group #1
	35. bas:TurboSyn		78. pip:Pizzillo	FX	121. sfx:WildBoy*
	36. bas:FlintRok		79. pip:Sakura		122. sfx:Infinite
	37. bas:FunkyPop	Synth	80. led:BrasSolo		123. sfx:LostSoul
	38. bas:Chorused	Leads	81. led:MeinSolo		124. sfx:Cyclotrn
	39. bas:Noser		82. led:SoloMini		125. sfx:Insects
Strings	40. str:Viol Duo		83. led:Hollow		126. sfx:Control
9-	41. str:BigViola		84. led:Venus NV		127. sfx:Fluterby
	42. str:BigCello		85. led:PortaMod		

 $^{^{\}ast}\,$ Indicates that the preset contains a Link to one or more presets in bank 3.

RAM Presets Bank 1

Keyboards	0. kbd:BritePno		43. str:XpresPiz		86. led:FrogFret
-	1. kbd:Dark Pno		44. str:PizzBass		87. led:Reedy
	2. kbd:PnoSyn *		45. str:PizVioln	Synth	88. pad:Voices
	3. kbd:ElGrand2		46. str:Fr Cello	Pads	89. pad:NewerAge
	4. kbd:Dramatic		47. str:Vienna		90. pad:Sweeper
	5. kbd:MedElPno	Ensemble	48. ens:Melotron		91. pad:Warm Up
	6. kbd:Harpsicd		49. ens:The Hall		92. pad:Empyrean
	7. kbd:Pizziano		50. ens:Montovan		93. pad:PolySyn
Chromatic	8. prc:Islander		51. ens:Concerto		94. pad:Britenes
Percussion	9. prc:OddVibes		52. ens:Envious		95. pad:Essence
	10. prc:Tamblock		53. ens:Crystal*	Synth	96. syn:echoist*
	11. prc:Airimba		54. ens:SloStrng	Sounds	97. syn:Mem Moog
	12. prc:Xylofony		55. ens:Vostring		98. syn:Blue Ice
	13. prc:Submerge	Brass	56. brs:Sax/Tpt		99. syn:Atmos
	14. prc:Maletoid		57. brs:Big City		100. syn:Mod Harp
	15. prc:CosmoBel		58. brs:Fox Hunt		101. syn:CyberGuy
Organs	16. org:DrawBarz		59. brs:T.O.P. *		102. syn:Intervl5
J	17. org:Mod>Lesl		60. brs:FullFall		103. syn:Spheric
	18. org:Clickety		61. brs:ThePops*	Ethnic	104 eth:Kalimba
	19. org:Chorus		62. brs:Crispy	2111110	105. eth:Amnesia
	20. org:TheOther		63. brs:Syntho		106. eth:Shanai
	21. org:Smoothy*	Reeds	64. red:Alto Sax		107. eth:TikiRoom
	22. org:Reedy5th		65. red:5th Ave		108. eth:Lute
	23. org:Church		66. red:NoVibObo		109. eth:AsiaReed
Guitars	24. gtr:El 12Str		67. red:BariAlto		110. eth:JunglDrm
	25. gtr:& Winds		68. red:BasnEHrn		111. eth:Noh Way*
	26. gtr:El Jazz		69. red:SecWinds	Percussion	112. drm:EchoBeat
	27. gtr:Baroque		70. red:CombViol		113. drm:Hip Kit*
	28. gtr:Baritone		71. red:ClarOboe		114. drm:Zip kit
	29. gtr:Pianotar	Pipes	72. pip:Piccolo		115. drm:Da Beat*
	30. gtr:Harmonic	·	73. pip:Chiffer		116. drm:909 Kit
	31. gtr:Feedback		74. pip:BrethFlt		117. drm:Syn Kit*
Bass	32. bas:Thunder		75. pip:Ocarina		118. drm:Latino
	33. bas:El Viva		76. pip:Insprate		119. drm:WinChime
	34. bas:Fretles1		77. pip:PanFlut*	Special	120. sfx:Sub Rosa
	35. bas:Slap #1		78. pip:EcoFlut*	FX	121. sfx:Too Wyrd
	36. bas:BigBotm*		79. pip:Duces Hi		122. sfx:Rockets
	37. bas:DarkRock	Synth	80. led:WynWoods		123. sfx:ByTheSea
	38. bas:Mystery	Leads	81. led:SoftSolo		124. sfx:Spacely
	39. bas:Bad Boy		82. led:Big Muff		125. sfx:Forestry
Strings	40. str:Conductr		83. led:Chiff		126. sfx:Sputnik
J.	41. str:Diverti		84. led:Mjr Solo		127. sfx:Whales
	42. str:Octaves		85. led:Buzzard		

 $^{^{\}ast}\,$ Indicates that the preset contains a Link to one or more presets in bank 3.

ROM Presets Bank 2

Keyboards	0. kbd:VryGrand		43. str:CntraBas		86. led:Xpresso
	1. kbd:RoadHaus		44. str:Tremolo		87. led:MoogSol2
	2. kbd:DigPiano		45. str:PizzCmbo	Synth	88. pad:AirStrng
	3. kbd:Grandios		46. str:OrchHarp	Pads	89. pad:UpRite
	4. kbd:RoadzStr		47. str:TimpCelo		90. pad:Vektor 4
	5. kbd:Roadz 2	Ensembl	e 48. ens:Strings		91. pad:Cortext
	6. kbd:NoseClav		49. ens:Quartet2		92. pad:0 Gravty
	7. kbd:Clavinet		50. ens:SynStrng		93. pad:Coolness
Chromatic	8. prc:Mod Vibe		51. ens:XtraSlow		94. pad:Grunge
Percussion	9. prc:Marimba2		52. ens:VoxSpred		95. pad:Mythical
	10. prc:MusicBox		53. ens:StrayVox	Synth	96. syn:Rain
	11. prc:Vibrafon		54. ens:Ominous	Sounds	97. syn:Cubic Z
	12. prc:Bellafon		55. ens:OrchHit*		98. syn:Phairest
	13. prc:Blok Hed	Brass	56. brs:Trumpet		99. syn:PiPaBend
	14. prc:TubeBels		57. brs:Big Band		100. syn:Nova
	15. prc:Cylybels		58. brs:Tuba		101. syn:Burma
Organs	16. org:Cathedra		59. brs:And Wind		102. syn:Wrinkles
Ü	17. org:AnotherB		60. brs:FrHorns2		103. syn:MoonWalk
	18. org:B Again		61. brs:Tijuana	Ethnic	104. eth:Fiddle
	19. org:WarmTone		62. brs:Gilespie		105. eth:Kotoid
	20. org:Notre		63. brs:Layered*		106. eth:EastPluk
	21. org:Accordia	Reeds	64. red:Sax&Mute		107. eth:Sitarica
	22. org:MouthHrp		65. red:DblReedz		108. eth:Shamisen
	23. org:Obordian		66. red:TenorSax		109. eth:Koto
Guitars	24. gtr:Guitaras		67. red:PowerSax		110. eth:SteelDrm
	25. gtr:The Hero		68. red:SynthSax		111. eth:Latimba*
	26. gtr:AcStereo		69. red:Layered*	Percussion	112. drm:GM Drum [*]
	27. gtr:Buckeroo		70. red:Bassoon		113. drm:LatinDrm
	28. gtr:PalmMute		71. red:BasClrnt		114. drm:RokKit2
	29. gtr:Swirly		72. pip:SynFlute		115. drm:Rap Kit
	30. gtr:Syn Mute	Pipes	73. pip:Flauta		116. drm:Taiko
	31. gtr:8va Pick	'	74. pip:8vaFlute		117. drm:Tam Tam
Bass	32. bas:StonSlap		75. pip:BrethEco		118. drm:AstroTmp
	33. bas:Fretles2		76. pip:Bottle		119. drm:RevCymbl
	34. bas:Syntheti		77. pip:Flut/Vox	Special	120. sfx:MetlVapr
	35. bas:Fretles3		78. pip:Xpresivo	FX	121. sfx:WaleTale
	36. bas:Super JX		79. pip:Picolode		122. sfx:RubSlap
	37. bas:Slapper	Synth	80. led:Wissler		123. sfx:YourHead
	38. bas:LosAngel	Leads	81. led:MoogSol1		124. sfx:telefone
	39. bas:Jupiter		82. led:New Ager		125. sfx:Spiritz
Strings	40. str:SoloViin		83. led:Medium		126. sfx:En Furno
9-	41. str:SoloViol		84. led:& Bass		127. sfx:Oh Heli
	42. str:SoloCelo		85. led:Hornz		
			-		

 $^{^{}st}$ Indicates that the preset contains a Link to one or more presets in bank 3.

ROM Presets Bank 3

	0 11 17 77	-			
Keyboards	s 0. kbd:IceHeven		43. str:DevDance		86. led:OvrDrive
	1. kbd:PnoWinds		44. str:PwrCello		87. led:PipeSolo
	2. kbd:PnoForte		45. str:AhVienna	Synth	88. syn:LunaWind
	3. kbd:Pad/Pno		46. str:Fairlite	Sounds	89. syn:BrassVox
	4. kbd:Big Comp		47. str:Thematic		90. syn:DarkAges
	kbd:Pianorg	Ensemble	48. ens:Mixture1		91. syn:Mtalovox
	6. kbd:Wurli EP		49. ens:Legatto		92. syn:IceForst
	7. kbd:Mute Pno	_	50. ens:Mixture2		93. syn:Mortale
Chromatic	8. prc:Equinox		51. ens:PeaceOrc		94. syn:Terminus
Percussion	n 9. prc:Waterway		52. ens:Chromax	Links	95. lnk:#002&258
	10. prc:Disonant		53. ens:VoxWarpr		96. lnk:#028
	11. prc:Of China		54. ens:StrGlide		97. lnk:#060
	12. prc:Omens		55. ens:StrFalls	<u></u>	98. lnk:#061
	13. prc:VibroPad	Brass	56. brs:Sesh Tpt	_	99. lnk:#111
	14. prc:Shining		57. brs:X-hibit		100. lnk:#121&243
	15. prc:BelleAir		58. brs:Chi-Town		101. lnk:#130&387
Organs	16. org:ToTheBar		59. brs:Waterboy		102. lnk:#149
-	17. org:Tocatta7		60. brs:Bones		103. lnk:#164
	18. org:5ths Bar		61. brs:Popster		104. lnk:#181
	19. org:Kalimgan		62. brs:DXster		105. lnk:#187
	20. org:Reedz		63. brs:& Voices		106. lnk:#189
	21. org:Doner		64. red:Fusion		107. lnk:#205
	22. org:Fisamon	Reeds	65. red:MythMakı		108. lnk:#206
	23. org:& Bass		66. red:SaxonSun	l	109. lnk:#224
Guitars	24. gtr:PlukFair	•	67. red:Dead Sea		110. lnk:#239
	25. gtr:Warped		68. red:Spring		111. lnk:#241
	26. gtr:LapSteel		69. red:OBX Clar		112. lnk:#245
	27. gtr:Combo12		70. red:Claraboe		113. lnk:#295
	28. gtr:Fingerz		71. red:Chamber		114. lnk:#311
	29. gtr:Calm B4	Pipes	72. pip:MuteFlut		115. lnk:#319
	30. gtr:AgntCoop	•	73. pip:Magical		116. lnk:#340
	31. gtr:Xtopia		74. pip:CryOnMe		117. lnk:#367
Bass	32. bas:FatSynth	-	75. pip:VerblAtk		118. lnk:#368
	33. bas:Rouge		76. pip:Flutachi		119. lnk:#368
	34. bas:Sick One		77. pip:The Flew		120. lnk:#368
	35. bas:RoundSyn		78. pip:Bellwiss		121. lnk:#388
	36. bas:Slapper2		79. pip:FluteVox		122. lnk:#403
	37. bas:Mondoid	Synth	80. led:Echo Tpt		123. lnk:#407
	38. bas:Kisser	Leads	81. led:Miles D		124. lnk:#421
	39. bas:Pulsar		82. led:IsleyRok		125. lnk:#434&325
Strings	40. str:PizzSter	=	83. led:5thsLead		126. lnk:#470
	41. str:PizCntrl		84. led:Synister		127. lnk:#471
	42. str:Swell		85. led:SynSushi		•

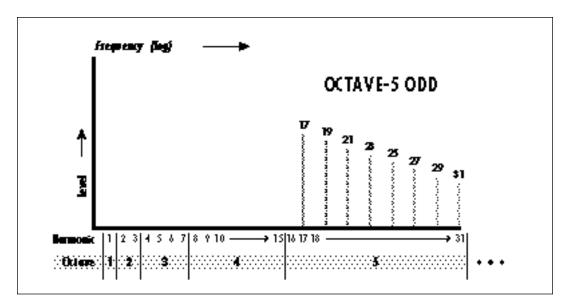
 $^{^{\}ast}\,$ Indicates that the preset contains a Link to one or more presets in bank 3.

Rock/Pop Instruments

1.	Piano	9 foot Grand Piano
2.	Piano Pad	Piano with slow attack and sustained loop
		Old style Grand Piano
4.	Tight Piano	Contemporary 9 foot Grand Piano
	_	String section with Basses, Cellos, Violas and Violins
		String section with long attack and release
		Section Strings with longer attack and release
	_	Section Strings with a darker tone
		Female Choir
		Female Choir with longer attack and release
11.	Dark Choir	Female Choir with a darker tone
		Genuine Flute with a short loop
13.	Soft Flute	Slow attack Flute
14.	Alto Sax	Alto Sax
15.	Tenor Sax	Tenor Sax
16.	Baritone Sax	Baritone Sax
17.	Dark Sax	Tenor sax with a darker tone
18.	Soft Trumpet	Soft blown Trumpet
19.	Dark Soft Trumpet	Soft blown Trumpet with a darker tone
20.	. Hard Trumpet	
		Hard blown Trumpet with a darker tone
22.	. Horn Falls	Descending pitch Trumpets
23.	Trombone 1	Trombone
24.	. Trombone 2	Trombone
25.	French Horn	French Horn
26.	Brass 1	Combination Trombone/Soft Trumpet
27.	Brass 2	Combination Trombone/Hard Trumpet
28.	Brass 3	. Combination Trombone/Soft Trumpet/Hard Trumpet
29.	Trombone/Sax	Combination Trombone and Sax
30.	Guitar Mute	Palm muted Electric Guitar
31.	Electric Guitar	Clean, Humbucking Electric Guitar
32.	Acoustic Guitar	Steel String Acoustic Guitar
33.	Rock Bass	Carbon Fiber Bass Guitar
34.	Stone Bass	Rare, Aluminum Neck Bass Guitar
		Bass Guitar with altered harmonics
36.	Funk Slap	Lower two Bass Guitar strings slapped
37.	Funk Pop	Popped Bass Guitar strings (combine with Funk Slap)
38.	Harmonics	Bass Guitar Harmonics
39.	Rock/Harmonics	Combination Rock Bass and Bass Harmonics
40.	Stone/Harmonics	Combination Alum. Neck Bass and Harmonics
41.	Nose Bass	Chunky, Popped Bass Guitar
42.	Bass Synth 1	Classic, Analog Synthesizer Bass Sound
43.	Bass Synth 2	Digital Bass Synthesizer

Rock/Pop Instruments

44. Synth Pad	Fat, Digital Synthesizer Pad
45. Medium Envelope Pad	Digital Synth pad with altered envelope
46. Long Envelope Pad	. Digital Synth pad with long attack and release
47. Dark Synth	Digital Synthesizer with a darker tone
48. Percussive Organ	Classic, Tone Wheel Organ sound
49. Marimba	Marimba
50. Vibraphone	Vibraphone
51. All Percussion (balanced levels)	
52. All Percussion (unbalanced levels)	
53. Standard Percussion Setup 1	
54. Standard Percussion Setup 2	
55. Standard Percussion Setup 3	
56. Kicks	
57. Snares	
58. Toms	
59. Cymbals	
60. Latin Drums	
61. Latin Percussion	
62. Agogo Bell	
63. Woodblock	
64. Conga	
65. Timbale	
66. Ride Cymbal	
67. Percussion FX1	
68. Percussion FX2	
69. Metal Percussiv	e, Metallic, Analog Synthesizer Sound



Waveforms

HARMONIC WAVEFORMS

- 70. Oct 1 (Sine)
- 71. Oct 2 All
- 72. Oct 3 All
- 73. Oct 4 All
- 74. Oct 5 All
- 75. Oct 6 All
- 76. Oct 7 All
- 77. Oct 2 Odd
- 78. Oct 3 Odd
- 79. Oct 4 Odd
- 80. Oct 5 Odd
- 81. Oct 6 Odd
- 82. Oct 7 Odd
- 83. Oct 2 Even
- 84. Oct 3 Even
- 85. Oct 4 Even
- 86. Oct 5 Even
- 87. Oct 6 Even
- 88. Oct 7 Even
- 89. Low Odds
- 90. Low Evens
- 91. Four Octaves

Starting from the first octave (fundamental), the harmonic waveforms contain the harmonics (odd, even, or all) present in each octave. In each successive octave the number of harmonics doubles. By combining (pri/sec or link) the harmonic waveforms in various amounts (volume), and transposing them (coarse/fine tuning), a vast range of timbres may be produced.

As an example, this chart shows the harmonics present in the Octave 5 Odd waveform.

Waveforms

SINGLE CYCLE WAVEFORMS

- 92. Synth Cycle 1
- 93. Synth Cycle 2
- 94. Synth Cycle 3
- 95. Synth Cycle 4
- 96. Fundamental Gone 1
- 97. Fundamental Gone 2
- 98. Bite Cycle
- 99. Buzzy Cycle 1
- 100. Metalphone 1
- 101. Metalphone 2
- 102. Metalphone 3
- 103. Metalphone 4
- 104. Duck Cycle 1
- 105. Duck Cycle 2
- 106. Duck Cycle 3
- 107. Wind Cycle 1
- 108. Wind Cycle 2
- 109. Wind Cycle 3
- 110. Wind Cycle 4
- 111. Organ Cycle 1
- 112. Organ Cycle 2

The single cycle waveforms are either synthesized or taken from actual sampled sounds. Each wave has a unique tonal quality.

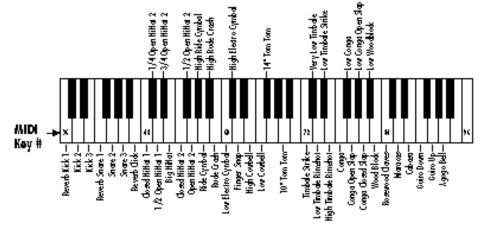
MULTI-CYCLE WAVEFORMS

- 113. Noise
- 114. Stray Voice 1
- 115. Stray Voice 2
- 116. Stray Voice 3
- 117. Stray Voice 4
- 118. Synth String 1
- 119. Synth String 2
- 120. Animals
- 121. Reed
- 122. Pluck 1
- 123. Pluck 2
- 124. Mallet 1
- 125. Mallet 2

The multi-cycle waves are short sections of sampled sounds.

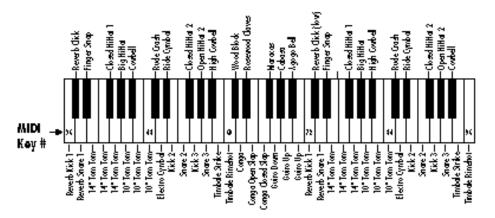
Orchestral Instruments

126.	Solo Cello	Bowed, Solo Cello with natural vibrate
127.	Solo Viola	Bowed, Solo Viola with natural vibrato
128.	Solo Violin	Bowed, Solo Violin with natural vibrate
129.	Gambambo	Cello, Violin with no vibrato
130.	Quartet 1	Celli, Viola, Violir
131.	Quartet 2	Bass, Celli, Violas, Violins
132.	Quartet 3	Celli, Viola, Violir
		Celli, Violir
134.	Pizz Basses	Bass section, plucked
135.	Pizz Celli	Celli section, plucked
136.	Pizz Violas	Viola section, plucked
		Violin section, plucked
138.	Pizzicombo	Pizzicato Bass, Celli, Violas, Violins
		Sustained Bass Clarine
		Sustained Clarine
141.	Bass Clarinet/Clarinet	Bass Clarinet and Clarinet split at CS
142.	Contra Bassoon	Contra Bassoon
143.	Bassoon	Bassoor
		English Horn with natural vibrato
145.	Oboe	Oboe with natural vibrate
146.	Woodwinds	Contra Bassoon, Bassoon, English Horn, Oboo
		Solo Trumpet, Harmon Mute
148.	Tubular Bell	Orchestral Tubular Bel
	•	Timpan
		Timpani/Tubular Bell split at C2
151.	Tambourine	Brass Tambourine
152.	Tam Tam	Tam Tan
		See Percussion 3 Char
	•	See Special Effects Char
		Oboe with no vibrate
156.	Upright Pizz	. Pizzicato Bass transposed across entire range

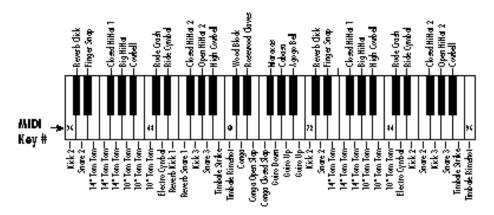


Waveforms

DIGITAL WAVEFORMS

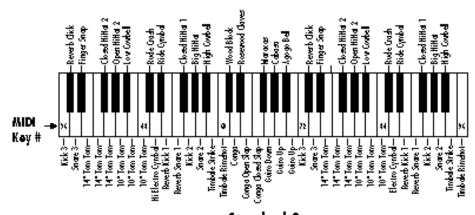

- 157. Sine Wave
- 158. Triangle Wave
- 159. Square Wave
- 160. Pulse 33%
- 161. Pulse 25%
- 162. Pulse 10%
- 163. Sawtooth
- 164. Sawtooth Odd Gone
- 165. Ramp
- 166. Ramp Even Only
- 167. Violin Essence
- 168. Buzzoon
- 169. Brassy Wave
- 170. Reedy Buzz
- 171. Growl Wave
- 172. HarpsiWave
- 173. Fuzzy Gruzz
- 174. Power 5ths
- 175. Filtered Saw
- 176. Ice Bell
- 177. Bronze Age
- 178. Iron Plate
- 179. Aluminum
- 180. Lead Beam
- 181. Steel Extract
- 182. Winter Glass
- 183. Town Bell Wash
- 184. Orchestral Bells
- 185. Tubular SE
- 186. Soft Bell Wave
- 187. Swirly
- 188. Tack Attack
- 189. Shimmer Wave
- 190. Moog Lead
- 191. B3 SE
- 192. Mild Tone
- 193. Piper
- 194. Ah Wave
- 195. Vocal Wave
- 196. Fuzzy Clav
- 197. Electrhode
- 198. Whine 1

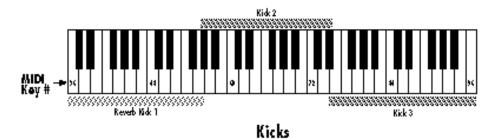
- 199. Whine 2
- 200. Metal Drone
- 201. Silver Race
- 202. Metal Attack
- 203. Filter Bass
- 204. Alt. Oboe


All Percussion

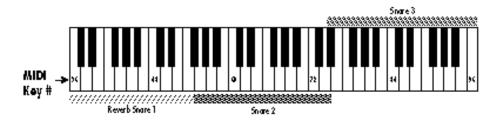
Instruments 51, 52

Standard 1

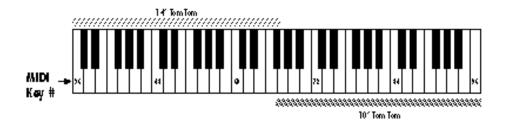

Instrument 53


Standard 2

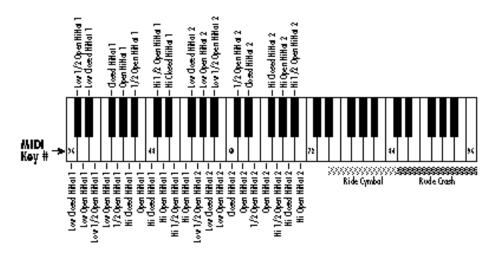
Instrument 54



Standard 3 Instrument 55

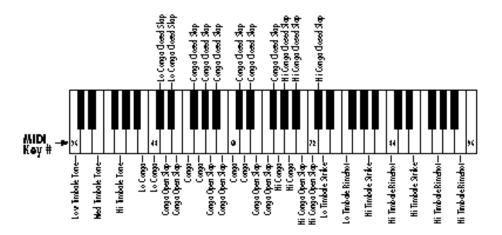


Instrument 56



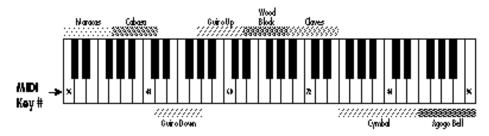
Snares

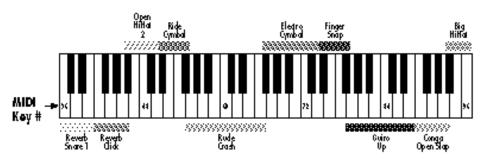
Instrument 57



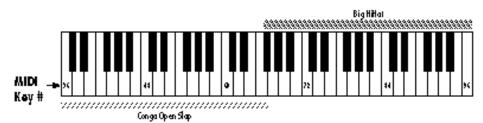
Toms Instrument 58

Cymbals

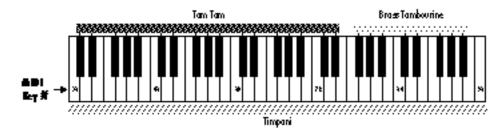

Instrument 59

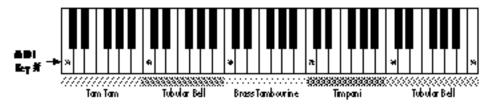

Latin Drums

Instrument 60

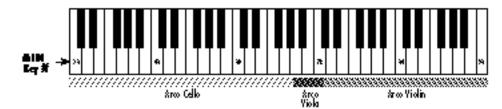


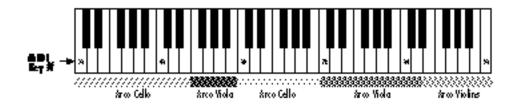
Latin Percussion
Instrument 61

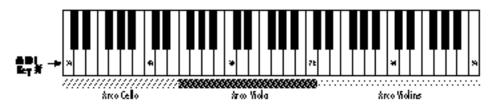

Percussion FX 1 Instrument 67


Percussion FX 2 Instrument 68

Agogo Bell, Conga, Ride Cymbal Instrument 62, 64, 66


Per cussion 3
Instrument 153


Special Effects (transpositions) Instrument 1.54


Instrument Locations

Quartet 1 Instrument 130

Quartet 2 Instrument 1:31

Quartet 3 Instrument 132

Technical Specifications

Audio Channels
Max. Output Level+4 dB into 600
Output Impedance 100
MIDI In, Out, Thru
Data Encoding 16 bit linear
Sample Playback Rate 39 kHz
Signal to Noise:>90 dB
Dynamic Range>90 dB
Frequency Response 20 Hz - 18 kHz
THD + N< .05%
IMD< .05%
Power Requirements
Operating Temperature 100° F Max.
Dimensions
Weight 4 lb. 9 oz (2 Kg)

MIDI Implementaion Chart

Function	1+++	Transmitted	Recognized	Remark s
Basic Channel	Default Changed	Ho Ho	1 1-16	Memorized
Mode	Default Messages	Yes	Mode 1, 3, 4 Moho, Poly Owhi, Oh/OFF	Memorized
Hole Humber	True Voice	Ho Ho	0-127 0-127	
Velocity	Hole OH Hole OFF	Ho Ho	Yes v⊨1-117 Ho	
Afler Touch	Keys Channels	Ho Ho	162 163	
Pitch Bende)[Но	Yes	
Control Cha	inge	Но	Yes	0-31 6479
Program Change	True Humber	Ho Ho	Yes 0-127 Yes 0-127	
All Sound 0	ff	Но	Yes	
All Holes Of	f	Но	Yes	
ResetAll Co	on Irollers	Но	Yes	
System Bxl	usive	Yes	Yes	
Sysiem Common	Song Pos Song Sel :Tune	Ho Ho Ho	Ho Ho Ho	
System Real Time	:dock :Comm ands	Ho Ho	Ho Ho	
Aux Messages	:Local On/Off okclive Sense :Resel	Ho Ho Ho	Ho Ho Ho	

Notes: Pan O=hard left 1*T*=hard right

Mode 1: OMHT OH, POLY Mode 2: OMHT OH, MOHO Mode 3: OMHT OFF, POLY Mode 4: OMHT OFF, MOHO

GENERAL INFORMATION FOR PROTEUS FX

- Product ID is 04.
- Device ID is [00-0F] (0-15 decimal).
- Since MIDI data bytes cannot be greater than [7F] (127 decimal), the data values are "nibble-ized" to a 14-bit signed 2's complement format.
- There is only one edit buffer which is for the current preset (the preset shown in the display). Only one preset at a time can be edited via SysEx commands and changing the current preset erases the edit buffer.

MIDI Specification

RECEIVED CHANNEL COMMANDS

Channels number (n) = 0-15. Message bytes are represented in hex. All other numbers are decimal.

Command	Message	Comments
Note Off	8n kk vv	release velocity is ignored
Note Off	9n kk vv	velocity $0 = \text{note off}$
Key Pressure	An kk pp	
Program Change	Cn pp	
Channel Pressure	Dn pp	
Pitch Wheel	En ll mm	l = lsb, m = msb
Realtime Controller	Bn cc vv	cc = 01-31
Footswitch	Bn cc vv	cc = 64-79, $vv = 64 = on$
Volume	Bn 07 vv	
Pan	Bn 0A vv	0 = hard left, 127 = hard right
Effect Control A	Bn 0C vv	See • Note below
Effect Control B	Bn 0D vv	See • Note below
Effect A Mix	Bn 5B vv	
B->A Feed	Bn 5C vv	
Effect B Mix	Bn 5D vv	
Reset All Controllers	Bn 79 00	ignored in omni mode
All Notes Off	Bn 7B 00	ignored in omni mode
Omni Mode	Bn 7D 00	forces all notes & controls off
Mono Mode	Bn 7E 00	forces all notes & controls off
Poly Mode	Bn 7F 00	forces all notes & controls off
Bank Select	Bn 00 00 20 bb Cn pp	bb = bank #, pp = prog. in bank

Bank 0 = 000-127 - bb=00 Bank 1 = 128-255 - bb=01 Bank 2 = 256-383 - bb=02 Bank 3 = 384-511 - bb=03

• Note: These controls adjust the currently selected parameter of the currently selected effect. The "currently selected" parameter is either the 1st one in an effect's parameter list (as initialized after power up) or the parameter selected either by hand or by SysEx parameter edits.

RECEIVED SYSTEM COMMANDS For system exclusive commands the following format is used:

F0 system exclusive status byte
18 E-mu ID byte
04 product ID byte
dd device ID byte
cc command byte

... data bytes (256 bytes/preset)

F7 EOX

Two MIDI bytes (lsb, msb) are required for each 14 bit data word. Bits 0-6 are sent first, followed by bits 7-13 in the next MIDI byte. All data words are signed 2's complement values with sign-extension out to the most significant bit (bit 13). This convention applies to all data words, regardless of the parameter's value range.

Command	Message	Comments
Preset Data Request		= preset # lsb, =preset # msb see note 6
Preset Data	F0 18 04 dd 01 ll mm cs F7 cs = checksum = sum of	all data bytes
Parameter Value Request	F0 18 04 dd 02 pl pm F7 pl = parameter # lsb	pm = msb
Parameter Value	F0 18 04 dd 03 pl pm vl vm F7 vl = value lsb	vm = msb
Tuning Table Request	F0 18 04 dd 04 F7	
Tuning Table	F0 18 04 dd 05 F7	
Program Map Request	F0 18 04 dd 06 F7	see note 1
Program Map Data	F0 18 04 dd 07 F7	
Version Request	F0 18 04 dd OA F7	see note 3
Configuration Request	F0 18 04 dd OC F7	see note 4
MMA Tuning Dump	F0 7E dd 08 01 tt <name (16="" ascii)="">F7</name>	see note 5

TRANSMITTED SYSTEM COMMANDS

Command	Message	Comments
Preset Data	F0 18 04 dd 01 II mm cs F	cs = checksum = sum of all data bytes
Parameter Value	F0 18 04 dd 03 pl pm vl vm F7 pm =	pl = parameter # lsb = msb vl = value lsb vm = msb
Tuning Table	F0 18 04 dd 05 F7	TT data = 256 bytes
Program Map Data	F0 18 04 dd 07 F7	see note 1

PARAMETER EDITING

Preset and setup parameters may be edited individually using system exclusive commands. The preset being edited is the active preset (the preset which is assigned to the received channel). The value of a given parameter may be changed by sending a parameter value command. The value of a parameter may be read by sending a parameter value request, to which the machine will respond by sending back the parameter value.

Preset data may also be transmitted or received in a single block (one complete preset) using system exclusive commands. A preset data request may be issued by a host computer, to which the machine will respond sending the data block for the requested preset. Conversely, the computer may send new preset data which will replace the specified preset currently in the machine. Additionally, a front panel command will transmit one or all user presets for backup onto an external sequencer. These presets may be restored by simply playing back the sequence into the machine.

ALTERNATE TUNING

The "user tuning table" allows any key to be tuned to an arbitrary pitch over an 8 octave range. If selected in the preset, an alternate tuning may be achieved by modifying the tuning values from the front panel or downloading a new table into the machine. The table consists of 128 words corresponding to the MIDI key range, kept in non-volatile memory. Each word is a pitch value expressed in 1/64 semitones, offset from key number 0 (c-2). Therefore, for equal temperament, each entry in the table would be equal to its key number times 64.

PRESET DATA FORMAT

Preset data is transmitted and received using the following format: The standard system exclusive header (described below) is followed by the preset number (lsb, msb), a 14 bit word for each preset parameter (lsb, msb) starting at parameter #0 and continuing upward, a one-byte checksum, and the end-of-exclusive byte (F7). The checksum is the modulo 128 sum of all the parameter value bytes; that is, all of the data bytes following the preset number and before the checksum.

PRESET PARAMETERS

Parameter Number	Parameter Name	Parameter Number	Parameter Name
0-11 preset	name (12 ascii chars)	46	sec pan
	link 1-3	47	sec delay
15-18	low key 0-3	48	sec low key
19-22	high key 0-3	49	sec high key
23	pri instrument	50	sec alt attack
24	pri sample start offset	51	sec alt hold
25	pri tuning (coarse)	52	sec alt decay
26	pri tuning (fine)	53	sec alt sustain
27	pri volume	54	sec alt release
28	pri pan	55	sec alt envelope on
29	pri delay	56	sec solo mode
30	pri low key	57	sec chorus
31	pri high key	58	sec reverse sound
32	pri alt attack	59	crossfade mode
33	pri alt hold	60	crossfade direction
34	pri alt decay	61	crossfade balance
35	pri alt sustain	62	crossfade amount
36	pri alt release	63	switch point
37	pri alt envelope on	64	LFO 1 shape
38	pri solo mode	65	LFO 1 frequency
39	pri chorus	66	LFO 1 delay
40	pri reverse sound	67	LFO 1 variation
41	sec instrument	68	LFO 1 amount
42	sec sample start offset	69	LFO 2 shape
43	sec tuning (coarse)	70	LFO 2 frequency
44	sec tuning (fine)	71	LFO 2 delay
45	sec volume	72	LFO 2 variation

PRESET PARAMETERS

Parameter Parameter Number Name

73 ----- LFO 2 amount 74 ----- aux delay 75 ----- aux attack 76 ----- aux hold 77 ----- aux decay 78 -----aux sustain 79 ----- aux release 80 ----- aux amount 81-86 -----key/vel source 1-6 87-92 -----key/vel dest 1-6 93-98 ----- key/vel amount 1-6 99-106 ----- realtime source 1-8 107-114 ----- realtime dest 1-8 115-117 ----- footswitch dest 1-3 118-121 ----- controller amount A-D 122 ----- pressure amount 123 ----- pitch bend range 124 -----velocity curve 125 ----- keyboard center 126 *preset submix 127 ----- keyboard tuning

GLOBAL/SETUP PARAMETERS

Parameter

Parameter

Number	Name
256	MIDI basic channel
257	MIDI volume
258	MIDI pan
259	current preset
260	master tune
261	transpose
262	-global pitch bend range
263	global velocity curve
264	MIDI mode
265	MIDI overflow
266-269	controller A-D numbers
270-272	footswitch 1-3 numbers
273	mode change enable
274	device ID number
384-399	MIDI channel enable
400-415** MID	I program change enable
416-431 † Bus A	ssign (per MIDI channel)
512-639 N	IIDI program/preset map
2381††	FxA ID
2382-2391 0	Current FxA Parm Values
2392††	FxB ID
2393-2402 0	Current FxB Parm Values
2403	FxA Wet Mix Percent
2404	FxB Wet Mix Percent
2405	Series B->A Percent

^{*} See note 7

^{**} See note 8

[†] See note 9

^{††} See note 10

NOTE 1 - PROGRAM MAPPING MIDI program changes will normally correspond to internal preset numbers 0-127. However, the user may "re-map" any MIDI program number, assigning it to an arbitrary internal preset. This feature allows any of the internal presets to be selected from a MIDI keyboard controller.

NOTE 2 - SOUND SETS

A Proteus FX has a double 8 MB sound set consisting of sample data (sound ROMs), plus additional instrument data in the program ROMs. Each of the sound sets has a unique ID number. The sound sets for Proteus FX are 0 and 2.

It is necessary to include the sound set number as part of the instrument number when exchanging data. The complete instrument number contains two fields: bits 8-12 specify the sound set (0-31) and bits 0-7 specify the instrument within the sound set (0-255).

Instrument Bit Fields:

Within any given sound set, the first instrument is #1 and #0 selects "None".

The "magic number" 387 represents the start number for the second sound set (2) of Proteus FX instruments. To calculate the complete instrument number follow the instructions below.

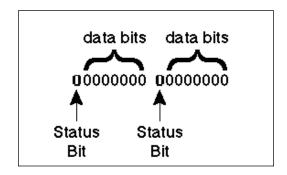
Next you must convert the SysEx instrument number to a 14-bit MIDI number. See the information on 14-bit 2's complement numbers.

Example:

Suppose we want to change the instrument to I130 Quartet 1.

- 1) 387 + 130 = 517 (387 + Instr. No.)
- 2) $517 \div 128 = 4 \text{ r-}5 = 2 \text{ (ignore remainder)}$
- 3) 4 in Hex = 04 = msb
- 4) remainder 5 in Hex = 05 = lsb
- 5) SysEx Instrument Number =

 Isb msb


 05 04

The complete message to change the primary instrument to #130:

F0 18 04 dd 03 17 00 05 04 F7

14-bit Signed 2's Complement Numbers If the data value is negative, you must first take the 2's complement of the number: In the case of a 14-bit number this is equivalent to adding 16384 to the original negative value.

To fit the 7-bit MIDI protocol, numbers must be "nibble-ized".

• To get the 14-bit nibble-ized value (of a positive value or a 2's complemented negative value):

msb = value DIV 128 (divide and ignore the remainder)

Isb = value MOD 128 (divide and use only the remainder)

• To go the other way (convert 14-bit signed 2's complement to a signed real number)

raw Value = (msb*128) + lsb (gives you the unsigned raw value)

if raw Value 8192 (8192 = 2^13) then signed Value = raw value - 16384 (16384 = 2^14)

Example: To find the "nibble-ized" Hex value of -127:

- 1) -127 + 16384 = 16252
- 2) $16252 \div 128 = 126 \text{ r} 124$
- 3) 126 in Hex = 7E = msb
- 4) 124 in Hex = 7C = 18b
- 5) Parameter value would be transmitted as 7C 7E

Example: To find the "nibble-ized" Hex value of parameter number 257:

- 1) $257 \div 128 = 2 \text{ r-1}$
- 2) 2 in Hex = 02 = msb
- 3) 1 in Hex = 01 = 1 sb
- 4) Parameter number would be transmitted as 01 02

NOTE 3 - VERSION REQUEST This command allows identification of

machine type and software revision. Proteus FX will respond to the request with the version data:

F0 18 04 dd OB 01 r1 r2 r3 F7 r1, r2, r3 =software revision number in ascii (decimal point between r1 & r2).

NOTE 4 -CONFIGURATION REQUEST This MIDI command is used to identify the sound sets in a given Proteus FX. The configuration request command is:

F0 18 04 dd OC F7

Proteus FX will respond to this command with the configuration message:

F0 18 0A dd 0D pl pm s1 l1 m1 s2 l2 m2 F7

where pl and pm are the lsb and msb are the total number of presets, s1 and s2 are the ID numbers of the sound sets contained in this unit, and n1=11, m1 and m2= 12, m2 represent the lsb and msb of the number of instruments in each sound set.

NOTE 5 - BULK TUNING DUMP Proteus FX can receive MIDI Tuning Standard dumps in addition to its own SysEx tuning table dumps. Proteus FX will only transmit in it's own SysEx tuning format. The MIDI Tuning Standard is as follows:

F0 7E dd 08 01 tt <tuning name (16 ascii)> ... F7

dd= device ID tt= tuning prog #
(ignored) tuning name = (ignored)

 \dots = data (xx yy zz) frequency data for one note repeated 128x

xx yy zz = 0xxxxxxx 0abcdefg 0hijklmn

xxxxxxx = semitone abcdefghijklmn = fraction of semitone in .0061 cent units. Examples: Middle C = 3C 00 00 A-440 = 45 00 00

NOTE 6 - PRESET DATA REQUEST Proteus FX presets are organized into groups of 64 presets for the purpose of bulk preset dumps. There are 8 groups of 64 presets (0-511). Each group may be requested using the preset request command and the appropriate preset code listed below.

Group 0	Preset Range 0-63	Preset Code 1024	MIDI Message F0 18 04 dd 00 00 08 F7
1	64-127	1025	F0 18 04 dd 00 01 08 F7
2	128-191	1026	F0 18 04 dd 00 02 08 F7
3	192-255	1027	F0 18 04 dd 00 03 08 F7
4	256-319	1028	F0 18 04 dd 00 04 08 F7
5	320-383	1029	F0 18 04 dd 00 05 08 F7
6	384-447	1030	F0 18 04 dd 00 06 08 F7
7	448-511	1031	F0 18 04 dd 00 07 08 F7
1	64-127	-1	F0 18 04 dd 00 7F 7F F7
0	0-63	-2	F0 18 04 dd 00 7E 7F F7
0-3	0-255	-3	F0 18 04 dd 00 7D 7F F7
4-5	256-511	-4	F0 18 04 dd 00 7C 7F F7

NOTE 7 - PER PRESET BUS ASSIGNMENTS (Preset Parameter 126)

0 - Main

1 - FxA

2 - FxB

NOTE 8 - PER CHANNEL PROGRAM/BANK ENABLE (Global Parameters 400-415)

Re	spond to:	Bank Select	Program Change
-1	Enabled, Use Program Map	No	Yes
0	Disabled	No	No
1	Enabled, initially Bank 1	Yes	Yes
2	Enabled, initially Bank 2	Yes	Yes
3	Enabled, initially Bank 3	Yes	Yes
4	Enabled, initially Bank 4	Yes	Yes

NOTE 9 -PER CHANNEL BUS ASSIGNMENTS (Global Parameters 416-431)

- 0 Main
- 1 FxA
- 2 FxB
- 3 From Preset

NOTE 10 - SYSEX EFFECTS CONTROL Parameter values transmitted via MIDI SysEx can be used to control all aspects of the Proteus FX effects processors. This SysEx protocol overlaps somewhat the channel-based MIDI controller numbers already assigned to effects; the MIDI controllers are designed for realtime performance control, or from a sequencer during mixdown, whereas the SysEx protocol is oriented towards setup at the start of the sequence, or use by editor and librarian programs.

Parameter 2381, 2392 FxA. FxB ID numbers

These parameters select which A and B effect to execute. Sending the parameter value will trigger loading a new A or B effect, using the effect's default settings. The parameter values are unique ID numbers which "name" the effect, and are given in the table on the following page. To cause "No effect" (a straight-through signal path) to be loaded, send ID #0 for FxA or ID #128 for FxB. Sending ID numbers not found in the table, or an FxA ID number for the FxB parameter or vice versa, will also cause "No effect" to be loaded.

Parameter 2382-2391, 2393-2402 FxA, FxB effects parameter values Both FxA and FxB each have 10 SysEx parameter numbers assigned to them to control up to 10 parameter values per effects program (most programs have far fewer.) Editing parameters which are not active can have unpredictable results (usually, the value of the first of or last valid parameter will be inadvertantly changed.). The order of the parameters is the same order as they appear in the Proteus FX display. The allowed range of SysEx parameter values is also the same as for the values displayed on the screen, and may be both positive and negative, depending on the parameter; out of range values are clipped. (Note that this differs from the way that MIDI channel effects controllers 12 and 13 work - their entire range of 0-127 is mapped to cover exactly the range of the effects parameter.)

Parameter 2403, 2404, 2405 FxA Mix %, FxB Mix %, B->A Feed % These parameters are used to control the relative Wet/Dry mix, from 0 (dry) to 100 (wet, ie all effect.) These duplicate the function of realtime MIDI channel continuous controller numbers 91 (FxA Mix), 92 (B->A Feed) and 93 (FxB Mix).

In addition, parameter 2405 (B->A Feed %) uses the value 101 to set "ONLY" (100% wet) FxB output into FxA input and "Off" (no B output); this special value is not available from the continuous controller 92.

EFFECTS CONTROLLER MESSAGES
The following standard MIDI controllers
will be mapped to effects parameters. The
MIDI channel on which these controllers
are transmitted must be enabled in the
Proteus FX Master Menu, but is otherwise
ignored.

0x0C (12) Effect Control 1
This adjusts the currently selected parameter of the currently selected "A" effect.

0x0D (13) Effect Control 2 This adjusts the currently selected parameter of the currently selected "B" effect

The Effect Control controllers will map 0-127 onto the whole range of the selected effect parameter. The "currently selected" parameter is either the first one in an effect's parameter list, (as initialized after power up) or the parameter selected either by hand or by SysEx parameter edits.

0x5B (91) FxA Mix % Adjusts the A mix amount

0x5C (92) B->A Feed % Adjusts the B->A mix amount

0x5D (93) FxB Mix % Adjusts the B mix amount

These controllers, defined in the MIDI spec as "Effects Depth Controllers", map controller values from 0-100 directly onto their corresponding mix percentages (to 101 in the case of B->A feed.) Note that these parameters may not respond as quickly as incoming controller data can be received by the unit, so you may hear the mix values jump in large steps in order to "catch up".

FxA Programs	Parameter
	Value
Room	1
WarmRoom	2
Plate 1	3
Plate 2	4
Chamber 1	5
Chamber 2	6
Hall 1	7
Hall 2	8
Delay	9
Cross Delay	10
Flange	11
Phaser	13
Chorus	12
Echo	15
Small Room 1	16
Small Room 2	17
Hall 3	18
Early Refl 1	19
Early Refl 2	20
Early Refl 3	21
Early Refl 4	22
Rain	23
Reverse ER	24
Shimmer	25

FxB Programs	Parameter Value
	value
Ring Modulate	29
Flange	130
Chorus	31
Fuzz	132
Phaser	133
Delay	134
Cross Delay	135
Fuzz Lite	138

CHANNEL BANK SELECT MESSAGES
The following standard MIDI controllers
will be mapped to MIDI Bank Select:

0x00 (0) Bank Select MSB

0x20 (32) Bank Select LSB

After a valid Bank Select message has been received, any subsequent program changes on that channel will occur within the selected bank. Partial or invalid bank select messages on a channel will not affect the bank selected for that channel. The BANK/PRST CHANGE screen will be updated if necessary to reflect the newly selected bank.

The possible range of controller values are:

0x0000 - Proteus FX Bank 0
0x0001 - Proteus FX Bank 1
0x0002 - Proteus FX Bank 2
0x0003-0xffff - Proteus FX Bank 3

(Note that controller values specifying bank numbers greater than Bank 3 are clipped. Note also that, because of a difference in naming conventions, Proteus Bank 0 corresponds to MIDI Bank 1 as defined in the MMA spec.)

As per the MIDI spec, these messages must be sent in MSB/LSB order without intervening messages; response to these messages in any other order or format is undefined, but Proteus FX will generally not respond to anything but the MSB followed directly by the LSB on the same channel.

Effect A 24 Effect B 24

Effect Bus Architecture 33 Α Index Effect Programming 35 A Effects List 35 Effect Settings, sending 30 A-D Controllers 28 Effect Output Routing 34 AC Adapter 14 Enter Button 17 AC Connection 14 **Envelope Generators 54** Alternate Volume Envelope 70 Attack 54 F В Factory Presets, sending 30 Feedback 40 B Effects 45 Fine Tuning 68 B->A 25 Flanger 39 Bank/Preset Change 27 Footswitch Control 76 Basic Setup 11 Footswitch Modulation 53 Fuzz 46 С Fuzz Lite 46 FX Amount 25 Chambers 36 FX Mix Select 24, 68 Changing the Instrument 82 Changing the Tuning 82 Channel Pan 18 G Channel Volume 18 Gamelan Tuning 78 Chorus 38, 68, 82 Global Bend 25 Coarse Tuning 68 Global Velocity Curve 26 Continuous Controller 60 Cross Delay 43 Cross-switch 70 Н Cross-switch Point 72 Hall 36 Crossfade Amount 71 Harmonic Waveforms 94 Crossfade Balance 71 Headphones 11 Crossfade Direction 71 Hold 54 Crossfade Modes 70 Cursor 17 Ī D ID number 26 instrument 10 Data Entry Control 17 Instrument Listing 92, 93, 96 Decay 54 Delay 42, 54, 69 Demo Sequences 20 J Digital Waveforms 97 Just C Tuning 78 Ε K Early Reflection 36 Key Number 58 Echo 44 Key Range 66 Edit Menu 65 Keyboard & Velocity Modulation 53, 57, 74 Edit Menu Select Button 17 Keyboard Center 76 Editing Presets 82

Keyboard Tuning 78

L Performance Setup 13 Index Phaser 41 Layering 81 Pitch Bend Range 76 LFO See Low Frequency Oscillator Plates 36 LFO Delay 72 Poly Mode 26 LFO Rate 72 Power Switch 14, 17 LFO Variation 72 Preset 10 Linking Presets 10, 81 Preset Change Disable 27 Low Frequency Oscillator 40, 55, 72 Preset Linking 78 Preset Name 66 Preset Selection 18 M Pressure Amount 76 Map, Program->Preset 29 Primary 10 Master Menu 17, 23 Primary Instrument 66 Master Settings, sending 29 Program Change Map 29 Master Tune 25 Program/Preset Map, sending 30 Microtonal Scales 30 Proteus Synthesis 83 MIDI Activity LED 17 MIDI Channel Selection 18 MIDI Controller Amount 76 R MIDI Controller Assign 28 Rain 36 MIDI Enable 27 RAM Presets 88, 89 MIDI Footswitch Assign 29 Realtime Control 28 MIDI Implementaion Chart 105 Realtime Controllers 60 MIDI In 11 Realtime Modulation 53, 59, 75 MIDI Messages 60 Receiving MIDI Data 30 MIDI Mode 26 Release 54 MIDI Mode Change 26 Reverb 35 MIDI Out 12 Room 36 MIDI Overflow 26 Reverb Descriptions 35 MIDI Program -> Preset 29 Reverse Sound 69 MIDI Realtime Controls 60 Reversing the Sound 83 MIDI Specification. 106-116 Ring Modulator 47 MIDI Thru 13 Ripoff 86 Midipatch 56 ROM Presets 90, 91 Mix Select 68 Modulation 52 Mono Mode 26 S Multi Mode 26 Sampling 14 Multi-Cycle Waveforms 95 Save Preset 78 Multi-timbral 19 Scale Tuning 78 Secondary 10 0 Secondary Instrument 66 Send MIDI Data 30 Omni mode 26 Sequencing 85 "Only" 25 See also FX Amount Shimmer 36 Single Cycle Waveforms 95 Р Solo Mode 69

Pan 68

Patch 56

Percussion Instrument Locations 98-103

Sound Start 69

Studio Setup 12

Sustain 54

Split Keyboard 51, 81

Index

Τ

Technical Specifications 104 Transmit MIDI Data 30 Transpose 25 Tuning Table, sending 30

U

User Key Tuning 30 User Presets, sending 30 User Presets 10 User Tuning 78

٧

Vallotti Tuning 78
Velocity Curve 76
Velocity Curve 58
Viewing Angle 30
Volume 68
Volume Control 17

19-Tone Tuning 78

Warranty

Please read this warranty, as it gives you specific legal rights.

Length of Warranty

This warranty covers all defects in materials and workmanship for a period of one year from the date of purchase by the original owner, provided that the Warranty Registration Card is filled out and returned to E-mu Systems within 14 days from the date of purchase. Cases may arise where E-mu's Service Department or one of E-mu's authorized service centers will ask for a copy of your sales receipt to facilitate warranty service. Please keep your purchase receipt in a safe place.

E-mu Systems does not cover:

- Damages due to improper or inadequate maintenance, accident, abuse, misuse, alteration, unauthorized repairs, tampering, or failure to follow normal operating procedures as outlined in the owner's manual.
- · Deterioration or damage of the cabinet.
- Damages occurring during any shipment of the product for any reason.
- · An E-mu product that has in any way been modified by anyone other than E-mu Systems, Inc.

Limitation of Implied Warranties

No warranty is expressed or implied. E-mu Systems specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Exclusion of Certain Damages

E-mu Systems' liability for a product found defective is limited to repair or replacement of the unit, at E-mu's option. In no event shall E-mu Systems be liable for damages based on inconvenience, whether incidental or consequential, loss of use of the unit, loss of time, interrupted operation or commercial loss, or any other consequential damages.

Some states do not allow limitation of the duration of implied warranties or the exclusion or limitation of incidental or consequential damages, so the above limitations and exclusions may not apply to you.

How To Obtain Warranty Service

All E-mu products are manufactured with the highest standards of quality. If you find that your instrument does require service, it may be done by an authorized E-mu service center. If you are unable to locate a service center in your area, please contact E-mu Systems Service Department at (408) 438-1921. They will either refer you to an authorized service center or ask that you return your instrument to the factory. When returning an instrument to the factory, you will be issued a Return Authorization number (RA). Please label all cartons, shipping documents and correspondence with this number. E-mu suggests you carefully and securely pack your instrument for return to the factory. Mark the outside of the shipping carton clearly with your RA number. Send to E-mu Systems, Inc. 1600 Green Hills Road, Scotts Valley, California, 95066. You must pre-pay `shipping charges to the service location. E-mu Systems will pay return shipping fees. You will be responsible for any damage or loss sustained during shipment in any direction.

