
Bome MIDI Translator

USER MANUAL

2017-03-18

Bome MIDI Translator: User's Manual

Table of Contents
1 Welcome...5
2 Quick Start..6

2.1 Installation on Windows..6
2.1.1 General Installation..6
2.1.2 Windows XP: Virtual Port Installation......................................8

2.2 Installation on OS X..10
2.3 Start MIDI Translator..10
2.4 MIDI Setup..11

2.4.1 MIDI Settings..11
2.4.2 Define MIDI Ports...12
2.4.3 MIDI Router / MIDI Thru...12

2.5 Add a first Translator Entry..13
2.6 Defining Translators..13

2.6.1 Incoming Action...14
2.6.2 Translator Rules...15
2.6.3 Outgoing Actions..15

3 MIDI Setup Guide...16
3.1 Virtual MIDI Ports...16
3.2 MIDI Devices and MIDI Aliases...17
3.3 MIDI Router..18

4 Program Interface..19
4.1 Main Window...19
4.2 Toolbar...20
4.3 Menu..21
4.4 The Project..21
4.5 Preset List...21
4.6 Translator List..21
4.7 Properties Pane..22
4.8 Event Monitor..22
4.9 Log Window...23

5 MIDI Translator Concepts..24
5.1 Project Level..24
5.2 Preset Level...24
5.3 Translator Level...25

5.3.1 Translator Options..25
5.3.2 Incoming Action...25
5.3.3 Rules (advanced)...25
5.3.4 Outgoing Action...26

5.4 Incoming Event Processing..26
6 The Project..27

6.1 Author Info..27
6.2 Project Default MIDI Ports...27
6.3 MIDI Ports and Aliases..28
6.4 MIDI Router..28

7 The Preset...29
7.1 Overview...29

(c) 2017 by Bome Software GmbH & Co. KG page 1

Bome MIDI Translator: User's Manual

7.2 Always Active..29
7.3 Changing Presets...29
7.4 Default MIDI Ports..31

8 The Translator Entry...32
8.1 Overview...32
8.2 Translator Options..32

8.2.1 Name...33
8.2.2 Active...33
8.2.3 Stop Processing..33

8.3 Incoming Actions..33
8.4 Rules..33
8.5 Outgoing Actions..34

8.5.1 Delaying Outgoing Actions...34
8.6 Editing Actions...35
8.7 Editing Rules...35

9 Actions...36
9.1 MIDI...36

9.1.1 Incoming MIDI...36
9.1.2 Outgoing MIDI...39

9.2 Keystrokes..41
9.2.1 Incoming Keystroke..41
9.2.2 Outgoing Keystroke..42
9.2.3 Injected Keystroke Events (Windows only).............................44

9.3 Timer...45
9.3.1 Incoming Timer..45
9.3.2 Outgoing Timer..45

9.4 Preset Change...46
9.4.1 Incoming Preset Change..46
9.4.2 Outgoing Preset Change..47

9.5 Disable/Enable Processing Actions...48
9.5.1 Incoming Disable/Enable Processing......................................48

9.6 Mouse (Outgoing)...49
9.6.1 Movement...49
9.6.2 Absolute Position..49
9.6.3 Button Clicks...50
9.6.4 Wheel...50
9.6.5 Injected Mouse Events (Windows only)..................................51

9.7 Execute File (Outgoing)...53
9.8 Serial Port...56

9.8.1 Data Representation and Format...56
9.8.2 Selecting a Serial Port and Alias..57
9.8.3 Configuring the Serial Port...58
9.8.4 Using a Serial Port as a MIDI Device......................................59
9.8.5 Capturing Serial Port Data...59
9.8.6 Incoming Serial Port...59
9.8.7 Outgoing Serial Port..60

9.9 AppleScript..62

(c) 2017 by Bome Software GmbH & Co. KG page 2

Bome MIDI Translator: User's Manual

9.9.1 AppleScript Outgoing Action...62
9.9.2 Control MT using External AppleScript...................................64

10 Rules and Variables...65
10.1 Overview...65
10.2 Rule Types...66

10.2.1 Assignment..66
10.2.2 Jump..68
10.2.3 Label..68
10.2.4 Exit Rules and execute Outgoing Action................................69
10.2.5 Exit Rules and ignore Outgoing Action..................................69
10.2.6 Conditional..69

10.3 Types of Variables..70
10.3.1 Local Variables...70
10.3.2 Global Variables...71

10.4 Using Rules and Variables..71
11 Settings..72

11.1 Startup Options..72
11.2 Appearance...73
11.3 Confirm...73
11.4 Virtual MIDI Ports...73
11.5 Serial Port Settings...74
11.6 Export/Import Settings..75

11.6.1 Overview...75
11.6.2 Create .bmts file...75
11.6.3 Manually Import .bmts file...75
11.6.4 Use Command Line for Importing Settings............................75
11.6.5 Auto-Load of .bmts File at Start-up.....................................75

11.7 Reset..76
11.7.1 Reset All..76
11.7.2 Remove MIDI Aliases..76

12 Behind the Scenes..77
12.1 Incoming Event Processing...77
12.2 Executing the Outgoing Action..78
12.3 Parallel Processing..79

13 Tips & Tricks..80
13.1 Make Backups!...80
13.2 Quick Access to Different Configs..80
13.3 Running from a USB Thumb Drive...81

13.3.1 Windows...81
13.3.2 OS X...81
13.3.3 Auto-load Settings..81
13.3.4 Auto-load Project..81
13.3.5 Using Multiple Configurations..82
13.3.6 Using Script Files..82

13.4 Timer with 0ms..82
13.5 Multiple Actions in one Translator..82
13.6 Performance Optimization..83

(c) 2017 by Bome Software GmbH & Co. KG page 3

Bome MIDI Translator: User's Manual

13.6.1 Deactivate Presets..83
13.6.2 Use “Stop Processing”...84
13.6.3 Avoid Redundancy..85
13.6.4 Use Project/Preset Default Ports..85
13.6.5 Use the Log Window For Development.................................85

14 Usage Examples...86
14.1 Traktor / Ableton Live Sync..86

15 Reference..88
15.1 Terminology...88
15.2 Keyboard Shortcuts..89
15.3 Command Line Switches..91
15.4 Menu Reference..92

(c) 2017 by Bome Software GmbH & Co. KG page 4

Bome MIDI Translator: User's Manual 1 Welcome

1 Welcome
Thank you for choosing Bome MIDI Translator!

This document contains:

MIDI Translator Quick Start

MIDI Translator User's Manual

Announcement List:

In order to get update notifications, sign up to the announcement
list. The volume on this list is very low and after email verification,
you can select which news categories you're interested in.

User Support:

Discussion Forums: get professional help for your questions

Contact Bome Software: support for registered users, purchase
inquiries, OEM licensing, bundling, site licenses, etc.

We hope you enjoy our software,

The Bome Software Team

(c) 2017 by Bome Software GmbH & Co. KG page 5

http://www.bome.com/contact
http://www.bome.com/forums
http://www.bome.com/newsletter
http://www.bome.com/newsletter

Bome MIDI Translator: User's Manual 2 Quick Start

2 Quick Start
2.1 Installation on Windows
Install Bome MIDI Translator with the options that you require. If you wish
to transmit MIDI messages to another application, make sure to install the
Bome Virtual MIDI Port drivers during installation. On Mac computers, the
virtual ports are always installed.

2.1.1 General Installation

> USER ACCOUNT CONTROL

After double-clicking the downloaded
installer file, Windows will ask for
permission to run the installer.

> INITIAL INSTALL SCREEN

Then, the installation wizard will begin:

> INSTALLATION TYPE

Usually, you'll choose Standard here for
quick and easy installation with the common
options.

For detailed control, use Custom mode.
There, you can choose if you want to install
the virtual MIDI ports.

(c) 2017 by Bome Software GmbH & Co. KG page 6

Bome MIDI Translator: User's Manual 2 Quick Start

> LICENSE AGREEMENT

Please read the license agreement
thoroughly. After reading, please select "I
accept the agreement", and click 'Next' to
acknowledge the license agreement and
continue with installation.

> INSTALLATION

Pressing Next will install MIDI Translator on your computer.

For Windows XP users, please see the following chapter for a guide through
the Virtual Driver installer.

> COMPLETION

That's it! You have installed Bome MIDI Translator successfully.

> STARTING MIDI TRANSLATOR

Start Bome MIDI Translator by double-clicking the desktop icon.

(c) 2017 by Bome Software GmbH & Co. KG page 7

Bome MIDI Translator: User's Manual 2 Quick Start

2.1.2 Windows XP: Virtual Port Installation
On Windows XP, the virtual port installation requires some user action
(unless you have chosen to not install virtual ports in Custom Install mode).
This is explained in the following paragraphs.

Windows Vista, 7, 9, 10 will install the virtual MIDI ports
without user interaction.

> WINDOWS XP: INSTALL WARNING

If you have chosen to install support for Bome virtual MIDI ports, you will be
presented with a dialog box detailing the installation process. Read the
instructions carefully and then click OK.

Windows XP: virtual port install warning

> WINDOWS XP: VIRTUAL PORT INSTALL

Bome virtual MIDI ports are installed much like a real hardware device. Click
"Install the software automatically" and then click Next to continue.

Windows XP: virtual port hardware install

(c) 2017 by Bome Software GmbH & Co. KG page 8

Bome MIDI Translator: User's Manual 2 Quick Start

> WINDOWS XP: LOGO TESTING

Be sure to click Continue Anyway when you are prompted about Windows
Logo Testing.

Windows XP: logo testing warning

> WINDOWS XP: VIRTUAL PORT INSTALLATION COMPLETE

Press the Finish button to complete the installation of the virtual MIDI port.

Windows XP: virtual port installation complete

(c) 2017 by Bome Software GmbH & Co. KG page 9

Bome MIDI Translator: User's Manual 2 Quick Start

2.2 Installation on OS X
After downloading the .dmg installer file, double click the file: it will open as
a volume and display a window similar
to the one at right.

To install Bome MIDI Translator in
your Applications folder, simply drag
the MIDI Translator Icon to the
Applications icon visible on the right in
the same window. Alternatively, you
can also double-click the MIDI
Translator icon – it will detect that it
runs off of a DMG volume and offer to
install itself in the Applications folder
for you.

If you want to use AppleScript with MIDI Translator, you must install it in
the Applications folder. Otherwise, you can also drag the MIDI Translator
Icon to a different folder or the desktop to install it there.

2.3 Start MIDI Translator
Once installed, start Bome MIDI Translator by double-clicking its icon.

(c) 2017 by Bome Software GmbH & Co. KG page 10

Bome MIDI Translator: User's Manual 2 Quick Start

2.4 MIDI Setup

2.4.1 MIDI Settings
The first step in setting up Bome MIDI Translator to work with your MIDI
device is to define it in the MIDI settings. To access the MIDI settings,
simply press the MIDI settings icon in the toolbar or select the top project
filename (“Untitled Project”) in the left pane.

MIDI settings

(c) 2017 by Bome Software GmbH & Co. KG page 11

Project MIDI Ports

Bome MIDI Translator: User's Manual 2 Quick Start

2.4.2 Define MIDI Ports
Next, specify the MIDI input and
output ports you will be using. The
MIDI OUT ports will be the ports to
which translated MIDI messages
are sent to.

The MIDI IN port will be used as
the source of MIDI data, typically
connecting with an external MIDI
device, e.g. via USB or a MIDI
interface on a sound card. Select
the appropriate MIDI input
source(s) by checking it.

You can use a virtual MIDI port
here if you are setting up a
translator for a software sequencer
or other audio application that
interfaces with MIDI. Check the
virtual MIDI port as the output
device and then select it as the
MIDI input port in your 3rd party application in order to have Bome MIDI
Translator control it. Use the alias “Bome Virtual Port 1” (in italics) instead
of the direct device.

2.4.3 MIDI Router / MIDI Thru
With the MIDI Router, you can
create MIDI Thru connections, i.e.
connect an input port with an
output port. Once connected, all
MIDI messages from the input port
will be sent directly to the output
port. You can use translator entries
to add or modify MIDI messages
sent to the output port.

Access the MIDI Router in the
Project Properties: click on the
filename on top of the left list, or
use the View menu (keyboard
shortcut: Ctrl+3). On the right,
scroll down until you see the
section titled MIDI Router.

(c) 2017 by Bome Software GmbH & Co. KG page 12

Bome MIDI Translator: User's Manual 2 Quick Start

To create a MIDI route, click and drag a MIDI IN connection on the left side
of the screen to the desired MIDI OUT connection to enable a MIDI thru
connection between the ports. Any data NOT particularly processed by your
preset will be routed directly to the designated output port.

2.5 Add a first Translator Entry
You now should have the MIDI interface settings properly configured. Test
that they're working correctly by moving a controller on your MIDI device
and checking to see if the corresponding light illuminates on the Event
Monitor, located at the bottom left.

Now you may begin adding translators. Click the T+ (Add Translator) button
on the toolbar to add a new blank translator. Name your translator and
press the Enter key. You can now begin working with the translator. If the
right translator properties are not visible, double click the translator object
to enter the Translator Edit screen.

2.6 Defining Translators
Once you've added your first Translator entry, open the right properties
pane by double-clicking it, or by pressing the properties tool button.

(c) 2017 by Bome Software GmbH & Co. KG page 13

Add Translator

Bome MIDI Translator: User's Manual 2 Quick Start

The properties panel is where you specify the incoming and outgoing actions
that the translator operates with, as well as the rules and processes that
take place between those actions.

2.6.1 Incoming Action
To start, you will need to specify
an incoming action to work with.
Be sure the Incoming Trigger type
is set to MIDI message, and click
the Capture MIDI checkbox.
Assuming your MIDI settings are
correct, you should see a list of
MIDI messages scroll by the
screen as you move a controller or
press a key or button on your
MIDI device. You may notice that
every MIDI message generates
multiple entries in the Capture list.
That is so that you can quickly
select one of several variants. For
example, there can be variants
with a two letter variable being
used. This two letter variable can
be used later in the rules section.
Uncheck the Capture MIDI
checkbox once you have selected the message you need.

Incoming MIDI messages are received and transmitted in their
native hexadecimal values. Variables can be assigned to any
part of an incoming MIDI message trigger field.

(c) 2017 by Bome Software GmbH & Co. KG page 14

Bome MIDI Translator: User's Manual 2 Quick Start

2.6.2 Translator Rules
Next, select the Rules tab to
view the rules entries for the
translator. In this screen, you
can specify rules that affect the
values local to the translator, or
use values stored in global
variables.

Click on the Add Rule drop-
down list to select the type of
rule that you wish to enter.
After adding the basic rule, edit
the rule parameters with the
drop-down lists. Rules can also
be entered directly into the text
field of the Rules dialog.

In the example, one rule has
been entered that will reverse
the controller value of a
standard MIDI signal. The rule
takes the variable value of the
incoming MIDI signal (for
example, the turning of a MIDI knob going from 0 to 127) and subtracts it
from 127, effectively reversing the signal. Experiment with adding your own
rules and editing the rules parameters. Refer to the Translators section of
the main manual to find out more about Rules.

2.6.3 Outgoing Actions
Now you need to specify what
you want your outgoing action
to be for the translator. Select
an action type from the
dropdown box and enter the
action details in the area
below. Outgoing action types
are varied and depend on the
application you are working
with and what you are trying to
accomplish. Keep in mind that
you can use both local and global variables in your translator entries. In the
example, we are sending a keystroke in response to the Incoming Action: a
keyboard shortcut Command-B.

(c) 2017 by Bome Software GmbH & Co. KG page 15

Bome MIDI Translator: User's Manual 3 MIDI Setup Guide

3 MIDI Setup Guide
3.1 Virtual MIDI Ports
A virtual MIDI port driver is included with the application which enables you
to send MIDI messages to other programs running on the same computer,
and to receive MIDI messages back from them. The virtual MIDI ports in
MIDI Translator are unidirectional MIDI ports, requiring the MIDI Translator
application running on one end, and any other program destination on the
other.

Unlike "loopback" virtual MIDI ports, which function as both IN and OUT
ports simultaneously, Bome virtual MIDI ports only pass through the
Windows API once rather than twice to route MIDI data. This added
efficiency makes Bome MIDI Translator faster and potentially more reliable,
resulting in reduced latency and jitter when operating with MIDI data. Bome
MIDI Translator also benefits from a high-speed MIDI data processing
engine at its core, delivering MIDI and translator action data at near
realtime speeds.

As a result of this direct connection, one end of the virtual MIDI port MUST
be connected to the MIDI Translator application via translators or the MT
Router. Direct use of the virtual MIDI ports between two other applications
is not possible.

Bome MIDI Translator can communicate directly with any MIDI device or
application, allowing it to serve as a powerful hub for MIDI information. A
common use for MIDI Translator's virtual ports would be to synchronize the
MIDI clocks of two applications. Using MIDI Translator's virtual ports, this is
a simple task of linking each application to a Bome virtual MIDI ports, then
connecting them in the MIDI Router.

(c) 2017 by Bome Software GmbH & Co. KG page 16

Bome MIDI Translator: User's Manual 3 MIDI Setup Guide

virtual port flow diagram

3.2 MIDI Devices and MIDI Aliases
Devices and aliases represent the different MIDI sources and destinations
available for MIDI Translator to send and receive MIDI data.

Aliases function as dynamic links to devices, allowing a MIDI Translator
project to be shared amongst users with different MIDI hardware and
software. When a Translator entry is created, default input and output MIDI
ports are assigned to it based on settings in the Project, Preset and
Translator default ports configuration pages. When a project file is opened
by a user who has different hardware and software MIDI ports, the program
will ask the user to reassign the used ports in the project to different MIDI
devices that are available on the computer.

Custom aliases can also be created, allowing you to create named ports in
your projects to better organize MIDI communications. For example, it can
be beneficial to create named ports in your project such as "KEYBOARD IN"
and "TO APPLICATION" to make your projects more human readable.

Default MIDI Ports and/or Aliases can be assigned to different elements of
your Bome project, allowing flexibility in routing MIDI data to different
devices.

Default ports can be assigned at the overall Project level, which will dictate
where newly created MIDI translators will receive and transmit MIDI data.
After the Project level, default ports/aliases can be assigned at the Preset
level, allowing you to override the Project default ports and have entire
Presets dedicated to managing the MIDI data coming from or going to a

(c) 2017 by Bome Software GmbH & Co. KG page 17

Bome MIDI Translator: User's Manual 3 MIDI Setup Guide

particular device or devices. Lastly, individual translator entries can have
specific port assignments that override both the Preset and Project default
ports.

Devices represent actual hardware and software MIDI ports

Aliases are pointers to these devices which can be reconfigured to
point to other devices on the fly.

Use aliases to create human-readable names for your MIDI sources
and targets

Your project file stores the default aliases you're using in your project.

Aliases are displayed in italics.

For every virtual MIDI port, there is an automatically created alias.
You should use the alias for best portability of your project file.

3.3 MIDI Router
By default, MIDI Translator does not route any MIDI data. For MIDI data to
be processed, either a Translator must be created for it, or a MIDI Router
connection must be made.

The MIDI Router is a patch panel type setup screen that allows for "patch
cords" to be created between available MIDI devices and aliases. Multiple
connections can be made from a single source MIDI IN device allowing MIDI
data to be replicated and sent to multiple devices concurrently.

A MIDI Router patch connection in Bome MIDI Translator can effectively be
thought of as a MIDI Thru connection. Any MIDI data that is received by a
source device in a MIDI Router patch connection is retransmitted to all
connected destination devices.

(c) 2017 by Bome Software GmbH & Co. KG page 18

Bome MIDI Translator: User's Manual 4 Program Interface

4 Program Interface
4.1 Main Window
From the main window of Bome MIDI Translator, a user can manage
projects, presets and translators from start to finish. The main interface is
subdivided into five main sections: the menu/toolbar, the preset list, the
translator list, the property editor, and the activity area.

Project: clicking the project filename will activate the Project
Properties.

Presets: Collections of Translator objects that can be activated or
deactivated easily

Translators: capture Incoming Triggers (which can range from MIDI
messages, keystrokes, event timers). Captured data can then be
manipulated and retransmitted as a different MIDI message, or an
entirely different action.

Property pane: depending if Project, Preset, or Translator is selected,
display the corresponding properties/editor.

Event Monitor: view realtime activity of sources, targets, and
internal processing

Log Window: text output of what MIDI Translator is doing

(c) 2017 by Bome Software GmbH & Co. KG page 19

Project

Translators
Presets

Properties

Bome MIDI Translator: User's Manual 4 Program Interface

4.2 Toolbar
The Toolbar enables easy access to the most commonly used menu items in
Bome MIDI Translator. There is an equivalent menu item for each of these
icons, which can be accessed via the menu or via keyboard shortcut.

Icon Name Description

New Project Start a new empty project

Open Project Open a Project file from disk (Ctrl+O / Cmd+O)

Save Project
Save the current Project to disk (Ctrl+S /
Cmd+S)

New Preset
Create a new Preset (Ctrl+Shift+P /
Cmd+Shift+P)

New Translator
Add a new Translator (Ctrl+Shift+T /
Cmd+Shift+T)

Duplicate
Create a new Preset or Translator as a copy of
the currently selected Preset or Translator
(Ctrl+D / Cmd+D)

Rename Preset Rename selected Translator or Preset (F2)
Copy Copy the selected Translator(s) to the clipboard
Cut Cut the selected Translator(s) to the clipboard
Paste Paste Translator(s) from the clipboard
Delete Delete selected Translator(s) / Preset(s) (DEL)

Properties
Show and select the properties of Translator or
Preset (ENTER)

MIDI Go to MIDI ports in the project properties

Log Window Show the Log Window in the lower left area

Event Monitor Show the Event Monitor in the lower left area

Stop Reset the MIDI out device (Panic) (Shift+ESC)

Help Show Help Topics (F1)

(c) 2017 by Bome Software GmbH & Co. KG page 20

Bome MIDI Translator: User's Manual 4 Program Interface

4.3 Menu
There are 5 main menu items:

File – operations on the file and the entire project, like open/save,
restart, etc.

Edit – operations on the currently selected Preset or Translator

MIDI – MIDI settings and options

View – show/hide sub-windows

Help – show this user manual, link to program update and support

4.4 The Project
Pressing the filename at top of the Preset List will activate the project. If the
properties panel at right is visible, it shows the project properties.

4.5 Preset List
Available presets are listed on the left pane, in the preset list.

A preset is a collection of translator entries. You can create as many presets
as you like, there is no functional difference if you create 10 presets with 1
translator each, or 1 preset with 10 translators.

Each item in the preset list has a n appropriate context menu that is easily
accessed by right-clicking a preset entry.

Use the check boxes to activate/deactivate the presets. Once a preset is
selected, the right properties panel will show the properties of the selected
preset. The edit functions like Duplicate, Copy, Paste, etc. will work on the
selected preset.

4.6 Translator List
To the right of the preset list is the translator list which contains the various
translator entries that are defined in the selected preset, along with a check
box for activating/deactivating the entries and a brief rundown of the
incoming and outgoing actions for each.

Each item in the translator list has an appropriate context menu that is
easily accessed by right-clicking on an entry. Also, global-level actions for
translators can be accessed by right-clicking the background of the pane.

(c) 2017 by Bome Software GmbH & Co. KG page 21

Bome MIDI Translator: User's Manual 4 Program Interface

If the properties panel is visible, selecting a Translator will show its
properties in the properties panel. You can double-click a translator or press
ENTER to activate the translator properties.

4.7 Properties Pane
When activated, the properties pane takes the entire right side. It displays
editors for the currently selected project, preset, or translator.

To invoke the properties pane, press ENTER in either the project, preset list,
or translator list, or double click an item in the lists, or press the properties
toolbar button: . You can also quickly view and activate the project
properties by pressing Ctrl+3, or select a preset and jump to its properties
by pressing Ctrl+4. For editing the translator properties, use these
shortcuts: General Ctrl+5, Incoming Ctrl+6, Rules Ctrl+7, Outgoing Ctrl+8.

Last, but not least, the project default MIDI ports are shown and selected

when you invoke the MIDI toolbar button .

4.8 Event Monitor
When active, the lower left activity area shows the event monitor, where
you can quickly see what internal and external signals Bome MIDI Translator
is processing. The virtual LEDs will flash when the noted action is being
performed, or the noted signal is being received or transmitted.

Event Monitor

You can activate the event monitor in the View menu, or with the toolbar
button.

(c) 2017 by Bome Software GmbH & Co. KG page 22

Bome MIDI Translator: User's Manual 4 Program Interface

4.9 Log Window

The Log Window shows a continuous text stream with real time notifications
what the MIDI Translator engine is currently doing. Use the checkboxes at
the bottom to select the types of events to display and whether you want
the displayed events to include a time stamp.

The Log Window is a great help when developing complex presets with rules
and other logic.

Note that displaying many entries in the Log Window can use a lot of CPU
resources and affect real time performance of the MIDI Translator
processing engine. For live use, disable the Log Window.

To see the Log Window, use the toolbar button or invoke it from the
View menu.

(c) 2017 by Bome Software GmbH & Co. KG page 23

Bome MIDI Translator: User's Manual 5 MIDI Translator Concepts

5 MIDI Translator Concepts
This chapter outlines the main concepts of MIDI Translator's concept. Refer
to the following chapters for in-depth descriptions of the respective topics.

5.1 Project Level
In MIDI Translator, a Project is equivalent to a .bmtp file that you can load
and save from within MIDI Translator. A Project includes the following
items:

Author Info
name, web site, and other info of the author of this project

Project Default MIDI Input ports
Set the MIDI devices (aliases) that this project receives from. If you
don't define specific MIDI Input ports at the Preset or Translator level,
the incoming MIDI actions will receive from these MIDI ports.

Project Default MIDI Output ports
Set the MIDI devices (aliases) that this project sends to. If you don't
define specific MIDI Output ports at the Preset or Translator level, the
outgoing MIDI actions will send to all the ports selected here.

MIDI Router
Define MIDI Thru connections for the entire project.

Global AppleScript
Here you can define AppleScript handlers which you can call from
outgoing AppleScript actions. See the AppleScript chapter for more
details.

Presets
The Project owns all presets which you can see in the Preset List.

5.2 Preset Level
A Project can have one or more Presets, they are always visible in the
Preset List at left.

A Preset is a collection of Translators. You can deactivate a Preset by
unchecking the “active” check box in the Preset List or with the equivalent
checkbox in the Preset general properties. All Translator entries in an
inactive Preset are ignored during event processing. It is possible to
activate/deactivate Presets by way of outgoing actions in a Translator.

A Preset contains the following:

(c) 2017 by Bome Software GmbH & Co. KG page 24

Bome MIDI Translator: User's Manual 5 MIDI Translator Concepts

Preset Properties
Name, active/inactive, “always active” convenience setting

Preset Default MIDI Input ports
Set the MIDI devices (aliases) that the Translators in this Preset
receive from by default. If you don't define specific MIDI Input ports in
a Translator, it will receive MIDI only from the ports selected here.

Preset Default MIDI Output ports
Set the MIDI devices (aliases) that the Translators in this Preset send
MIDI to by default. If you don't define specific MIDI Output ports in
the Translator's outgoing action, it will send to all MIDI ports selected
here.

Translators
The preset owns a list of translator entries, as visible in the center
Translator List.

5.3 Translator Level
A Translator is the work horse of your project: here you define the
translation conditions and reactions. You can add as many Translators into a
Preset as you like. The Translator List only shows the Translators in the
selected Preset.

A Translator has the following 4 items:

5.3.1 Translator Options
General settings: name, active/inactive, “stop processing”.

5.3.2 Incoming Action
The condition for processing this Translator. You can choose from a variety
of incoming action types, like MIDI messages or typed keystrokes. There are
also MIDI Translator internal events like when a Preset is activated or when
a Timer expires.

5.3.3 Rules (advanced)
If the Incoming Action is triggered by an event, the Rules are executed.
Rules are simple logic and math statements for advanced usage.

(c) 2017 by Bome Software GmbH & Co. KG page 25

Bome MIDI Translator: User's Manual 5 MIDI Translator Concepts

5.3.4 Outgoing Action
If the Incoming Action was triggered (and the Rules don't cancel the
Translator action), the Outgoing Action is executed. There are many
different action types: for example, you can send a MIDI message, or
emulate typing a keystroke. You can also affect MIDI Translator's internal
behavior by activating or deactivating Presets, or by starting a Timer.

5.4 Incoming Event Processing
When MIDI Translator receives an incoming event, it starts to process it with
the first Translator entry in the first Preset (provided that the Preset is
activated). Then it continues on to the second Translator in the first Preset,
and so on until all Translators in the first preset have processed this
incoming event. Then the same is repeated for the second Preset. This is
done until the event is processed by all Translators in all Presets.

If during event processing a translator entry has the Stop Processing flag
set and is triggered by the event, processing of this event is interrupted and
any following translators and presets will not see this event.

For a more in-depth explanation of the engine's event processing, see
chapter 12.1 Incoming Event Processing.

(c) 2017 by Bome Software GmbH & Co. KG page 26

Bome MIDI Translator: User's Manual 6 The Project

6 The Project
6.1 Author Info
The Author Info screen lets you attach information to your Bome MIDI
Translator project file that will travel with the file if you decide to
redistribute it. This section is particularly of use if you are sharing project
template files with other users.

Information collected in the Author Info page includes:

Author Name

Author Contact Info

Comments
Here you can record notes about how the preset works, which
variables are used for what, and possibly instructions on how to use
the project.

6.2 Project Default MIDI Ports
In the Default MIDI Ports, you can
specify the incoming and outgoing
MIDI ports that are used by the
project when it is opened. This
functionality is useful when
transporting project files between
computers that may have different
MIDI controllers. Project MIDI port
aliases can be created in the MIDI
Ports / Aliases screen and selected in
the Default MIDI Ports screen to
ensure that rules created for one
MIDI device can be linked to another
easily.

The Default MIDI Ports screen can be
accessed via the program menu by
navigating to File / Project
Properties / Default MIDI Ports, from the View menu, or by selecting the

MIDI toolbar button:

(c) 2017 by Bome Software GmbH & Co. KG page 27

Bome MIDI Translator: User's Manual 6 The Project

6.3 MIDI Ports and Aliases
The MIDI Ports list is where you set your incoming and outgoing MIDI ports,
as well as where you specify project aliases. Simply mark the checkbox next
to the MIDI IN and OUT ports you wish to use in your project and they will
become available for use in translators.

Any project that is opened from another user with different MIDI hardware
will STILL have entries for their unique MIDI incoming and outgoing
settings. Using the MIDI ports list(s), one can reassign the MIDI
assignments of a project to point to any combination of hardware and/or
software MIDI ports.

To create a new MIDI port alias, simply click on the Create Alias button
under the MIDI port listing. A new alias will be created, which can be named
anything and assigned to any hardware or software MIDI port.

MIDI Aliases are useful for working with multiple input and output MIDI
sources, such as connecting multiple hardware MIDI devices, or connecting
one or more hardware MIDI devices to multiple software inputs.

6.4 MIDI Router
The MIDI Translator Router is a
powerful but simple way for MIDI
Thru connections to be made
between MIDI Interfaces. All
detected MIDI IN ports and aliases
are displayed on the left column of
the screen, while MIDI OUT
interfaces and aliases are displayed
on the right side. Simply drag and
drop a line between the two ports
you wish to create a THRU
connection between and one will be
created, represented by a solid line
connecting them.

MIDI THRU connections can span from one MIDI IN port to many MIDI OUT
ports. This will effectively duplicate all MIDI messages to the connected
MIDI OUT ports.

Conversely, you can create connections from multiple MIDI IN ports to a
single MIDI OUT port. This results in MIDI messages being merged.

To access the MIDI Router, select it from the MIDI menu, or scroll down in
the project properties.

(c) 2017 by Bome Software GmbH & Co. KG page 28

Bome MIDI Translator: User's Manual 7 The Preset

7 The Preset
7.1 Overview
Bome MIDI Translator encapsulates Translator entries into 'Presets' which
can be managed at a more detailed level than a normal 'Global' setup where
every translator is active all the time.

A preset's active or inactive state can be determined by looking at the
checkbox next to its name. If the checkbox is checked, the preset is active
and its translators are being processed. If the preset's checkbox is
unchecked, it is deactivated and no processing occurs.

Presets can be selected by clicking the preset's name, and they can be
activated and deactivated via the mouse by clicking the checkbox (or use
the SPACE bar for toggling the active state). Presets can also be managed
via the context menu accessed by right-clicking either the preset itself
(copy, rename, delete, etc) or by using the Edit toolbar buttons.

Presets can also be activated and deactivated via Outgoing Actions of
Translators.

7.2 Always Active
Checking the Ignore for
Next/Previous Prest Switching
(Always Active) property for a
Preset will render it exempt
from the rules of
Next/Previous Preset Change
Outgoing actions. When it's
“always active” it will not be
touched when using the “Next
Preset” or “Previous Preset”
Outgoing Actions.

7.3 Changing Presets
Presets can be activated and deactivated by clicking the checkbox next to
the preset name. This is the most direct way of working with Presets.
However, mouse and GUI access is at many times at a premium, so Bome
MIDI Translator features the capability to switch and work with Presets via
the 'Preset Change' outgoing Translator action.

(c) 2017 by Bome Software GmbH & Co. KG page 29

Bome MIDI Translator: User's Manual 7 The Preset

Presets can be activated via Preset Change action by one of three primary
methods:

Activate Previous/Next Preset
This outgoing action will cycle through the available presets in order,
activating only one at a time. Presets must be arranged in the order of
which the user desires to cycle them on and off. This is normally the
preferred way of cycling through presets.

Activate/Deactivate By Name
This action will activate/deactivate a preset that is selected by name
from a drop-down box. This is useful for most simple preset setups
involving few presets. Features that involve key commands can be
enabled/disabled on the fly so as not to interfere with regular
keyboard operation when not needed.

Activate/Deactivate By Number
Presets can be enabled or disabled by number, which can be specified
by a unique local or global variable (see the rules section for more
information). This outgoing preset change action is useful for more
complex MIDI Translator scripts that have many presets and change
them on-the-fly depending on other Translator settings and variable
states. Note that the first preset has number 0, the second preset
number 1, and so on.

Presets also have the checkbox option available to 'Deactivate all other
presets (except the always active)'. This can be enabled in any Preset
Change outgoing action to automatically disable all other presets (except, of
course, the 'always active' preset). With that function, you can easily cycle
through a set of presets.

(c) 2017 by Bome Software GmbH & Co. KG page 30

Bome MIDI Translator: User's Manual 7 The Preset

7.4 Default MIDI Ports
Individual Presets can have default MIDI ports defined. Default Input MIDI
ports are useful if you have multiple MIDI IN devices you wish to manage
independently from one another, or you have MIDI hardware on the same
MIDI channel that you wish to separate. Default Output ports are useful if
you are working with multiple software programs or outboard devices, and
you wish to divide and manage translator data amongst them.

Defining Default Ports for a preset is simple. First, select the Preset you wish
to change, then check the properties for the Default MIDI Ports sections. All
the ports that you check will be defined as preset default ports.

Also note that you can select "Project Default Ports" to use the default
project ports as defined in the Settings screen. Preset Default Ports override
Project Default Ports.

(c) 2017 by Bome Software GmbH & Co. KG page 31

Bome MIDI Translator: User's Manual 8 The Translator Entry

8 The Translator Entry
8.1 Overview
Translator Entries comprise the core functionality of Bome MIDI Translator.
In simple terms, translators listen for an 'incoming action', optionally do
some processing on the incoming action (see the Rules section of the
manual), and then optionally output an 'outgoing action.' Translators are
limited to a single incoming action and outgoing action, but you can easily
create multiple translators with identical incoming or outgoing actions
depending on your needs. Translators can, however, transmit and receive
on multiple MIDI ports, making interfacing with different devices easier.
Also, the routing flexibility of outgoing actions and rules allow for a lot to be
accomplished with a single translator.

The “Play” entry is the currently selected Translator entry. This Translator
listens for the Play button on the MIDI device. Once pressed, it emulates a
keystroke combination: Ctrl+Option+Insert.

8.2 Translator Options
There are three main settings in the 'Options' section in the translator
properties.

(c) 2017 by Bome Software GmbH & Co. KG page 32

Bome MIDI Translator: User's Manual 8 The Translator Entry

8.2.1 Name
This is the simple descriptive property of the translator. It does not have
any function other than for reference in presets and activation rules. The
Translator name is not a unique value, therefore multiple translators can
have the same name. It is recommended that the Translator name be
something simple that will make identifying multiple translators in large
presets more easy. You can also edit the name directly in the Translator List
(shortcut F2).

8.2.2 Active
This option determines whether the translator is actively being processed
(listening for defined incoming action) or whether it is disabled (and
therefore ignoring incoming actions). This parameter can also be changed in
the Translator List (shortcut SPACE).

8.2.3 Stop Processing
If this is enabled, successful completion of this translator's Outgoing Action
will cause the rest of the translators in the current preset, and in following
presets, to be ignored. This is useful for multiple-part presets that have
different processes depending on different defined actions. In general, it is
essential if you want to ensure that one incoming event is only processed by
the first translator that matches.

“Stop Processing” is also useful for optimizing performance of very large
projects with thousands of Translators (see chapter 13.6.2 Use “Stop
Processing”).

8.3 Incoming Actions
Incoming Actions define the triggers which Bome MIDI Translator can detect
and act on. Bome MIDI Translator can recognize a range of different types
of incoming actions.

See the next chapter for using the individual action types.

8.4 Rules
This is a rudimentary scripting language for advanced usage. The Rules
section is executed each time an incoming event matches the Incoming
Action. The Rules allow you to process the incoming event parameters and
apply logic and math to it. There is also global “memory” (i.e. global
variables) that you can use in Rules.

(c) 2017 by Bome Software GmbH & Co. KG page 33

Bome MIDI Translator: User's Manual 8 The Translator Entry

See the Rules chapter for more information.

8.5 Outgoing Actions
Outgoing Actions are executed when the Incoming Action is triggered.

Bome MIDI Translator can output a range of different outgoing actions, as
well as function with translators that are composed solely of rules with no
defined outgoing action.

See the next chapter for a description of the different action types.

8.5.1 Delaying Outgoing Actions
All Outgoing Actions can be delayed so that they will be executed after some
seconds, or milliseconds.

Millisecond Precision
If you need millisecond precision, specify the delay in milliseconds. Note
that 1000 milliseconds are equal to one second, so if you specify 2500
milliseconds the outgoing action will be executed after 2.5 seconds.

Rules
If your Translator has rules, they are executed immediately, i.e. before the
delay of the Outgoing Action starts “ticking”.

Using Variables for Delay
You can specify the delay with a variable. The amount to delay is evaluated
when starting the delay, so even if the value of a variable changes while
waiting for the delayed action to be executed, the delay will stay the same.

Using Global Variables in the delayed Outgoing Action
Of course you can use global variables in the Outgoing Action, but keep in
mind that they are global and if they are changed while waiting for the
delayed action, the delayed Outgoing Action will use the new value of the
global variable.

Using Local Variables in the delayed Outgoing Action
Any delayed action can use local variables, they “stick” with the action.

(c) 2017 by Bome Software GmbH & Co. KG page 34

Bome MIDI Translator: User's Manual 8 The Translator Entry

Cannot Cancel a Delayed Action
It is not possible to cancel a delayed action once it's triggered.

8.6 Editing Actions
The actions are edited in the right properties inspector. The Incoming and
Outgoing areas have a drop down list where you you define the type for the
given action. Depending on the type, an editor will be visible with more or
less options.

All edits are generally immediately active so it is easy to test different
variations. But be aware: there is no Undo function!

Whenever an action is not fully defined (e.g. data string is missing), or the
action definition is not correct, an error message under the type selector will
be displayed.

You can use the keyboard shortcut Ctrl+6/Command+6 to quickly jump to
the Incoming Action definition, and Ctrl+8/Command+8 for the Outgoing
Action.

8.7 Editing Rules
The rules editor has a free form text area, where you can see the rules like
program text. You can either edit the text directly, or use the Rules Wizard
Editor for point+click editing.

The current editor line is marked in yellow. Any lines that are not in the
correct format are marked in red.

It is good practice to add comments to longer Rules sections so that you'll
remember what the rules actually do. A comment line starts with //.

Use the keyboard shortcut Ctrl+7/Command+7 to quickly jump to the rules
section.

(c) 2017 by Bome Software GmbH & Co. KG page 35

Bome MIDI Translator: User's Manual 9 Actions

9 Actions
9.1 MIDI

9.1.1 Incoming MIDI
With MIDI Translator, you can
use any MIDI message as a
trigger for your actions. You
can either select from a
number of predefined
messages (simple mode), or
use the raw/system exclusive
mode to enter the MIDI
message as raw hexadecimal
values (raw mode).

Whenever a MIDI message is
received, all translators with
the incoming action type MIDI
are checked in the order they
appear in the preset(s). The
incoming message definition
is compared to the incoming
action of each translator and
if they match the Rules and
Outgoing Action are executed.

Capture MIDI
The simplest way to define a
new MIDI incoming action is
to use the 'Capture MIDI'
feature (covered in the Quick
Start guide) to capture the incoming MIDI information while you are
pressing a MIDI keyboard key, turning a knob or otherwise. Standard MIDI
messages will be listed three times:

1) the raw MIDI message (hexadecimal notation)

2) simple mode MIDI message

3) simple mode MIDI message with value set to a variable

(c) 2017 by Bome Software GmbH & Co. KG page 36

Bome MIDI Translator: User's Manual 9 Actions

Clicking on a message in the capture panel will select that message as
incoming trigger.

Uncheck “Capture MIDI” (or press Alt+C) to stop displaying incoming MIDI
data. Click the X button to close the Capture MIDI panel.

Note that Capture MIDI always displays incoming MIDI
messages from all currently opened MIDI devices, regardless of
selected MIDI ports for the translator.

Editing MIDI Messages
You can now change the
message as you like, e.g. to
make it match any channel, or a
specific channel set by a
variable.

Variables are covered more
completely in the Rules section.
You can use local variables
(defined as double-letter pairs
such as 'pp' and 'xx' in the rules
section to modify the incoming
values to fit your needs. You
can also use global variables
(defined as variables beginning
with the letters 'g' through 'n',
plus 'y' and 'z') to pass variables
back and forth between
translators.

Description of MIDI
Message
This option allows you to write a short description of the Incoming Action for
the translator that will show up in the main program interface. This can
make complex translator setups much easier to work with and navigate.

Swallow MIDI Message / Do Not Route
This option indicated that you wish to NOT retransmit the incoming MIDI
message on to the MIDI Thru destinations specified in the Project Routing
connection screen. So, when an incoming MIDI message matches at least
one Incoming MIDI trigger, the message will not be sent to the MIDI Router.
By specifying None as outgoing action, you can filter out MIDI messages
from the router.

(c) 2017 by Bome Software GmbH & Co. KG page 37

Bome MIDI Translator: User's Manual 9 Actions

Select MIDI Ports
The Incoming MIDI trigger can be assigned to listen on a specific port if so
required. Select the Specific Ports... radio button, then check the MIDI
port(s) you wish for the translator to listen to. We recommend to use Preset
Default MIDI ports where possible.

Raw MIDI / System Exclusive
When using the raw mode, you can enter any MIDI message, including
system exclusive messages as a sequence of hexadecimal numbers. Check
the MIDI Specification or online sources for more information on raw MIDI
message definitions.

Also, invalid, partial, and multiple concatenated MIDI messages are
possible.

You can embed variables directly into the raw MIDI string instead of a
number. In that case, the MIDI message will match any values at that
position, setting the variable to the incoming MIDI message's value.
Variables in the Incoming MIDI string will always be changed upon a
matching incoming MIDI message, and not touched if the MIDI message
does not match. We recommend to use local variables here, as they are
private to an incoming message, and don't collide if multiple matching MIDI
messages arrive simultaneously.

Raw MIDI Examples
The following are some sample incoming raw MIDI string examples, along
with description. For further instructions on using variables, go to the
chapter Using Rules and Variables.

ACTION STRING TYPE CHANNEL
CONTROLLER/
NOTE/PROGRAM

VALUE

9F 6F pp Note On 16 111 ANY

BA ww 7F Controller 11 ANY 127

B4 xx pp Controller 5 ANY ANY

C4 nn
Program
Change

5 ANY n/a

pp qq rr
any 3-byte
MIDI message

any any any

(c) 2017 by Bome Software GmbH & Co. KG page 38

Bome MIDI Translator: User's Manual 9 Actions

C2 10 B2 00 40

Program
Change
followed by
Control
Change

3
Program #16
Controller #0

64

F0 7F 7F 04 01 pp
qq F7

Master Volume
(Universal
System
Exclusive)

n/a
pp receives LSB of
master volume
qq receives MSB

9.1.2 Outgoing MIDI
When using MIDI as the Outgoing
Action, the translator sends one or
multiple defined MIDI messages
when the Incoming Action is
triggered.

In the screenshot to the right, the
output value of the translator's
outgoing MIDI message includes an
'xx' variable, meaning that any
number of rules could have been
used to assign value to this
variable depending on many
factors.

Comparison with Incoming
MIDI
Most options from the Incoming MIDI trigger are available in the Outgoing
Action, too. The Swallow option is not available for outgoing actions, as it
only makes sense for the Incoming Action. Also, you cannot set variables in
the Outgoing Action's MIDI message , but you can send messages that take
the values of variables which are already defined into account.

Capture MIDI
Capturing MIDI messages for Outgoing MIDI works the same as Incoming
MIDI: the capture list displays all MIDI messages that are received from all
currently open MIDI devices. In particular, the list does not display MIDI
messages that are sent out to MIDI OUT ports. See the Log Window for
monitoring MIDI OUT activity.

(c) 2017 by Bome Software GmbH & Co. KG page 39

Bome MIDI Translator: User's Manual 9 Actions

Selecting the Outgoing MIDI port
Outgoing MIDI actions are transmitted by default on the Preset Default MIDI
ports, or if specified, on specific MIDI ports unique to the individual
Outgoing MIDI action. For that, select Specific Ports... on the radio button
selector and check each MIDI OUT port you wish to use.

Description
Also, an optional Description can be entered for each Outgoing Action that
will give a plain text description that can be viewed from the program main
interface.

Raw MIDI / System Exclusive
Similar to the Incoming MIDI trigger, you can specify the outgoing MIDI
message as a raw MIDI message in form of a string of hexadecimal
numbers. Check the MIDI Specification or online sources for more
information on raw MIDI message definitions.

You can include variables in the outgoing raw MIDI string. In that case,
before sending the message to the MIDI port, the variable is replaced with
its value and that replaced string is sent. The variable's value is not
changed.

(c) 2017 by Bome Software GmbH & Co. KG page 40

Bome MIDI Translator: User's Manual 9 Actions

9.2 Keystrokes

9.2.1 Incoming Keystroke
If you want to trigger a translator by pressing (or releasing) keys on your
computer keyboard, use Keystroke as Incoming Action.

Keystroke-based incoming
translator actions can be defined
in different ways.

The Text incoming keystroke
type lets you define a text (or
just a letter) to be typed for use
as a trigger. For example, if you
enter the text “1”, the user
needs to press the 1 key to
trigger the action. However, on
French keyboards, there is no
key for “1”, you need to press
SHIFT+& key to type a “1”. Thus, Frnech user will need
to press SHIFT+& to invoke the same action. As a rule of
thumb, the Text incoming keystroke action is triggered
when the text, as seen in the text field, is produced by
the keyboard, no matter how.

The Physical Keys keystroke type lets you match the
incoming action by physical keys. They are defined by
key position. So entering a “1” key here will always
trigger on pressing the key which produces the “1”.
Consequently, when a French user opens the same
project file, the action will be triggered by pressing the
“&” key because the key has the same location as the
“1” key on an English keyboard.

The Down and Up types let you trigger the action on
only pressing down or releasing the specified key. Only
one single physical key is possible here. It is often used
to capture the Down/Up state of modifier keys such as
SHIFT, CONTROL, etc.

For the Text and Physical Keys types, you can specify arbitrary sequences
and key combinations to serve as a trigger. Parenthesis are used to mark
simultaneous presses of keys. This can be conveniently used to trigger on
keyboard shortcuts. For example, “Shift(Ctrl(A))” will only trigger if you
press A with the Control and Shift keys together. Similarly, you can also

(c) 2017 by Bome Software GmbH & Co. KG page 41

Bome MIDI Translator: User's Manual 9 Actions

invent new combinations like “A(B(C))” which will only trigger if you press
C while holding down A and B. Last, but not least, you can also create key
sequences which must be fully typed to trigger the action. For example,
you the sequence “A B Ctrl(D A)” will only trigger if you press A (down and
up), then B, then Ctrl Down, followed by D and A, and then Ctrl Up.

When entering key strokes, use the BACKSPACE key to remove the last
entered key, and the TAB key to remove focus from the keystroke field. To
enter a TAB or BACKSPACE key as trigger text, use the respective buttons
below the keystroke field. Use the Clear button to entirely remove all
entered keys and start over. The Special Key dropdown list allows you to
enter a special key which might not be present on your keyboard.

On OS X 10.9 and later, you need to enable MIDI Translator Pro
in System Preferences, Security & Privacy Privacy → →
Accessibility.
For OS X earlier than 10.9, go to System Preferences, Universal
Access: check 'access for assistive devices'.

9.2.2 Outgoing Keystroke
For emulating keystroke
presses (and releases), and
to emulate typing entire
sequences of keys, use the
Outgoing Keystroke action.

Incoming actions can be
translated to any
combination of keystrokes,
for use in complex macro
routines to control 3rd party
program functions. The best place to start with programming keyboard
combination macros is to consult your software's instruction manual and
determine what keyboard shortcuts are available to you.

Keyboard Emulation outgoing actions can either be typed text, physical key
press/key combination events, or individual Key Up / Key Down events.

When entering key strokes, use the BACKSPACE key to remove the last
entered key, and the TAB key to remove focus from the keystroke field. To
enter a TAB or BACKSPACE key into the keystroke field, use the respective
buttons below the keystroke field. Use the Clear button to entirely remove
all entered keys and start over. The Special Key dropdown list allows you
to enter a special key like Mute, Browser Back, etc. which might not be
present on your keyboard.

(c) 2017 by Bome Software GmbH & Co. KG page 42

Bome MIDI Translator: User's Manual 9 Actions

The emulated keystrokes are always sent to the currently active
application. When MIDI Translator is the active application,
keystrokes are not sent.

Text
The Text mode (new in version 1.8) allows emulating keystrokes so that
they type the given text (i.e. characters and not keys). This is particularly
useful for entering numbers, special characters, and international letters
which may have different positions or ways to enter on different keyboards.

In the text field, enter the text to be typed to define it for this Outgoing
Action.

When executing a Text string, MIDI Translator figures out the necessary key
strokes for each letter, emulating SHIFT and other modifier keys as
necessary. For example, to emulate typing the square bracket “[”, MIDI
Translator will just emulate typing that key on an English keyboard, while it
will emulate pressing RightAlt+8 on a German keyboard.

Physical Keys
Emulating physical keys is similar to Text, but it will always execute the
same keys (and not characters), no matter which keyboard or language is
selected. Shift and other modifiers are treated as individual keystrokes. So,
for example, when you create an outgoing physical keystroke definition
“Ctrl([)” on an English keyboard, it will produce “Ctrl+[” on your computer,
but “Ctrl+ü” when MIDI Translator is running on a computer with German
keyboard selected.

Key Down / Up
You can emulate pressing just one key down (press) or up (release). This is
useful when you want to keep modifier keys like Shift pressed for
subsequent Outgoing Actions (e.g. combine with Mouse Outgoing Action).

For Keystroke Down, you can optionally define a repeat delay, so that the
key is repeated automatically as long as you don't send the corresponding
Key Up action.

Example: MIDI Note to Keystroke with Repeat
If you want to execute a key event, and have the key repeated as long as
you press a key on your MIDI Keyboard, you will need two translators:

1. The first translator has MIDI as incoming trigger. Use MIDI Capture,

(c) 2017 by Bome Software GmbH & Co. KG page 43

Bome MIDI Translator: User's Manual 9 Actions

press the MIDI key and select the Note On variant in from the
captured events. Make sure you select “any” for the velocity. As
outgoing action, use “Key Stroke Down”. Enter the letter/key to be
“typed” in the text field (e.g. "X"). Enable the Key Repeat box.

2. Now duplicate the first translator and edit it: change the incoming
message to Note Off (keep everything else). Change the Outgoing
action's Key Stroke to “Up” and re-type the letter (e.g. “X”).

Now switch to a text editor and press the key on your MIDI Keyboard down.
As long as you keep it pressed, the letter "X" will be typed repeatedly. Once
you release the key, the keystroke emulation stops, too.

9.2.3 Injected Keystroke Events (Windows only)
On Windows, you can inject keystroke events directly to a specific
application. For programs with which it works, you can type into programs
without the need to activate them.

Injecting key strokes only works on Windows. It does not work
with every program, however, and you will need to test with
your application of choice.

Injecting keystrokes can make your projects
much more robust because it will still work
when (accidentally) another program is
activated, and you can control multiple
programs with key strokes without the need
to switch the active window.

For injecting key strokes, check that option
in the Outgoing action, then click on the
Capture button. Moving your mouse will now
show a green rectangle around every
recognized window and sub window. Click
on the window or sub window you want to
target with the injected key strokes. Use the
Find button to see if the window definition is
sufficient to find the corresponding window.

We recommend to always test if the injected key stroke works. Often,
application windows are layered and you may need to experiment a bit to
find the suitable sub window for injecting key strokes.

Sometimes, it can even work to directly inject, say, SPACE to a button sub
window, effectively clicking the button.

(c) 2017 by Bome Software GmbH & Co. KG page 44

Bome MIDI Translator: User's Manual 9 Actions

9.3 Timer
With a Timer, you can create delayed and reoccurring actions. A Timer will,
when its time has elapsed, inject an Incoming Event into the processing
engine. You can execute a Timer with an Incoming Action just like any other
event.

In general, this is how a timer works when activated in an Outgoing Action:

1. Wait for the Initial Delay.

2. Fire off an Incoming Timer Event with the name of the timer into the
MT processing engine.

3. In the engine, all translators with Incoming Timer action and the
timer's name will be executed.

4. If this is a Once timer, stop timer.

5. If this is a Multiple Times timer and number of executions has reached
the Repeat Count, stop timer.

6. Wait for the Repeat Delay.

7. Start over at 2.

9.3.1 Incoming Timer
Incoming Timer actions are events
that will trigger once or multiple times
automatically depending on the Timer
settings. Incoming Timer actions must
be tied to an already-existing Outgoing
Timer Action in order to work properly.
Defining Incoming Timer actions is
very simple - the only option is the selection of which Timer to use. Most of
the Timer options are defined in the Outgoing Timer Action screen, which is
covered below.

Note that you can specify multiple translators with the same Incoming Timer
as incoming action. It's a convenient way to execute multiple outgoing
actions with one single trigger.

9.3.2 Outgoing Timer
There are two main types of Timer
actions - Activate Timer and Kill
Timer. Timers can be instantiated by
selecting them as an outgoing

(c) 2017 by Bome Software GmbH & Co. KG page 45

Bome MIDI Translator: User's Manual 9 Actions

action, and setting their appropriate repeat times and other options. Timers
are usually associated with other translators that have the Timer name as
their incoming action.

For instance, if you wanted to repeat the 'Up' arrow key as long as a
condition is met, you would first create an outgoing Timer action that set
the repeat rate, then you would create a new translator which would output
the keyboard emulation for the 'Up' arrow key - using your existing Timer
translator as the incoming action.

Timer parameters include repeat occurrence (once, multiple times,
indefinitely), initial delay, repetition delay and testing functionality.

If you start a Timer that is already running, the delay time will be refreshed
with the new delay time.

One-shot 0ms Timer
A trick is to use a one-shot timer with 0 delay: this will cause the current
input event to be fully processed, and the timer event will be processed
immediately, too – possibly already in parallel to the current event. For
example, if you have a series of outgoing actions to be executed from
multiple triggers, define the same 0ms timer as Outgoing Action for all
trigger Translators, and use that timer as Incoming Action in all Translators
of the series of outgoing actions. See also chapters 13.4 Timer with 0ms and
13.5 Multiple Actions in one Translator.

Timer Initial Delay vs. Outgoing Action delay
Note that for starting a timer, you can specify an initial delay, and there is
also the possibility to specify an action delay (see Delaying Outgoing
Actions). Those two delays add up, but there is a big difference: by delaying
the outgoing action, the timer will not exist before the outgoing action delay
has passed. So during that time you cannot kill or override that timer!
Consequently, you should avoid delaying an outgoing timer action, and
rather use the timer's (initial) delay.

9.4 Preset Change

9.4.1 Incoming Preset Change
Preset change incoming actions are actions that are activated when the
preset is changed through some means. Preset Change Actions are useful
for "one-off" type of actions that only occur once at the very beginning of
the preset change. These actions are often 'reset' actions that could either
redefine global variables or reset controllers to default values.

(c) 2017 by Bome Software GmbH & Co. KG page 46

Bome MIDI Translator: User's Manual 9 Actions

When loading or restarting a Project, a preset change event is triggered for
all initially active presets.

9.4.2 Outgoing Preset Change
Preset change outgoing actions have the capability of managing project
presets, either by activating certain ones, deactivating certain ones, or
cycling through them all as a set. When cycling (“next preset / previous
preset”), any preset marked “Ignore for Next/Previous switching” are
excluded from cycling, and can therefore be used as an always active
preset.

(c) 2017 by Bome Software GmbH & Co. KG page 47

Bome MIDI Translator: User's Manual 9 Actions

9.5 Disable/Enable Processing Actions

9.5.1 Incoming Disable/Enable Processing
This incoming action is
triggered in response
to program events.
'Startup' actions occur
when the project file is
loaded. Certain actions
that need to take place
first before any other
actions, and only once
are best defined by
here. For example, it's
a good idea to initialize
variables to start-up values when the project file is opened.

The “processing is disabled” type is triggered when you press the
panic/STOP button, or the “disable processing” outgoing action was
executed. You can use it to send additional STOP messages or to do other
housekeeping.

Consequently, the “processing is enabled” type is triggered when processing
restarts by either pressing the STOP button again, or when the outgoing
action “enable processing” is executed.

Outgoing Disable/Enable Processing

There are two functions - disabling MIDI Translator Processing and enabling
MIDI Translator Processing. The program as a whole can be bypassed using
the 'Disable Processing' outgoing action, preventing any of the translators
from activating. If MIDI Translator is disabled in this way, the only way to
re-enable it is by using the 'Enable Processing' outgoing action defined in a
different translator.

(c) 2017 by Bome Software GmbH & Co. KG page 48

Bome MIDI Translator: User's Manual 9 Actions

9.6 Mouse (Outgoing)
Included in Mouse-type outgoing actions are multiple types of actions:
Movement, absolute positioning, button clicks and wheel.

Each of those type of mouse actions includes settings for a variety of
different parameters that can be manipulated to control the system mouse.

9.6.1 Movement
Movement events can be transmitted to the system mouse pointer using
this mouse event type. Movement is defined using two text boxes, one for
Up/Down movement and the other for Left/Right movement, for specifying
the respective mouse pointer movement in pixels. For Up and Left
movement, use negative numbers. For Down and Right movement, use
positive numbers.

You can also use variables for movement.

9.6.2 Absolute Position
The absolute positioning type allows for the mouse to be moved to a pre-
determined point on the screen. Absolute positioning is measured in pixels,
similarly to how screen resolution is set. Use your system's screen resolution
as a guide for setting absolute positioning (example: if you have a
1024x768 screen, the exact center of the screen would be absolute position
512x384).

The Y coordinate is the distance from top of the screen, and the X
coordinate is the distance from left. Therefore, specifying X=0 and Y=0 will
put the mouse cursor in the upper left corner.

On Windows, you can use the Capture button, then move the mouse to
enter a specific mouse position. Click the mouse to retain the current
position in the outgoing action.

You can also use variables for the X and Y coordinates.

(c) 2017 by Bome Software GmbH & Co. KG page 49

Bome MIDI Translator: User's Manual 9 Actions

9.6.3 Button Clicks
Button clicks can be emulated using this mouse outgoing action. Button click
events occur at the current position of the mouse pointer. A Button Click
event is comprised of a complete Mouse Down+Mouse Up event, unless
otherwise selected.

You can emulate button clicks for left, right, and middle buttons as well as
for auxiliary buttons 4, 5, and 6. It depends on your mouse settings what
they will do. For example, the 4th button is often mapped to the “Browser
Back” function, and the 5th button to the “Browser Forward” function.

Optionally, you can position the mouse before executing the click by
checking “Set Mouse Position”. It works the same as “Mouse Position” and
effectively executes two actions at once.

9.6.4 Wheel
Mouse wheel events can also be transmitted. Mouse wheel events can either
be Forward (away from you) or Backward (towards you).

You can also specify variables for the amount wheel motion. Use a positive
number for moving forward, and a negative number for moving backward.
The wheel “ticks” are 1/10th of a wheel “click”, so specifying 10 will emulate
moving the mouse wheel one “click” forward (away from you).

Moreover, you can emulate a second wheel, which usually maps to
horizontal movement: use a positive number for “wheeling” to the right, and
a negative number for the left.

(c) 2017 by Bome Software GmbH & Co. KG page 50

Bome MIDI Translator: User's Manual 9 Actions

9.6.5 Injected Mouse Events (Windows only)
On Windows, you can inject mouse events directly to a specific application,
similar to injecting keystrokes. For programs with which this works, you can
send mouse events while not moving the real mouse cursor.

Injecting mouse events only works on Windows. It does not
work with every program, however, and you will need to test
with your application of choice.

Injecting mouse events can make your projects much more robust because
it will still work when (accidentally) another program is activated, and you
can control multiple programs with mouse events without the need to switch
the active window.

For injecting mouse events, simply check that option in the Outgoing action,
then click on the Capture button. Moving your mouse will now show a green
rectangle around every recognized window and sub window. Click on the
window or sub window you want to target with the injected mouse event.
Use the Find button to see if the window definition is sufficient to find the
corresponding window.

When injecting mouse events, all X/Y positioning is with
regards to the targeted window! X=0 and Y=0 is therefore the
upper left corner of the target window.

We recommend to always test if the injected mouse event actually works.
Because most of the time, application windows are layered, you may need
to experiment a bit to find the suitable sub window for injecting mouse
events.

Sometimes, it works to directly inject, say, a mouse button click event to a
button sub window, effectively clicking the button.

(c) 2017 by Bome Software GmbH & Co. KG page 51

Bome MIDI Translator: User's Manual 9 Actions

In this example, the injected mouse button press clicks the TAP button of an
Ableton Live window.

(c) 2017 by Bome Software GmbH & Co. KG page 52

Bome MIDI Translator: User's Manual 9 Actions

9.7 Execute File (Outgoing)
The Execute File outgoing action type lets you define an executable file with
parameters to run as a resultant outgoing action. Enter the executable file
name with path in the File Name text box, along with any parameters you
would like to pass to it in the Parameters text box (usually surrounded by
quotation marks).

Opening Documents
In the File to Execute field, you can specify a document instead of a
program (see the screenshot above). In that case, the associated program
will open the given document. For example, you can enter the filename of a
PDF document in the Filename field. Now executing this action will start the
default PDF viewer and let it open the PDF document. In this case, any
given Parameters are ignored.

Relative Filename path
If the file to be executed is located in the same folder of your project file, or
in a sub folder, it's recommended to use a relative filename (e.g.
“apps/MyApp.exe”). That way, it will be much easier to use the preset on a
different computer.

(c) 2017 by Bome Software GmbH & Co. KG page 53

Bome MIDI Translator: User's Manual 9 Actions

Opening a MIDI Translator Project File
If you specify a .bmtp file in the Filename, it will be directly opened in the
running instance of MIDI Translator, unloading the currently running project
file first.

Using Variables in Filename and Parameters
You can include the value of variables in the filename and in the parameters
using the %..% scheme:

Number Representation:

Normal (decimal) value of a variable: %var% or %d var%
e.g.: %pp% will insert the value of the variable pp.

Hexadecimal value of a variable: %x var% or %X var% (upper case)
e.g.: %X pp% will embed the uppercase hexadecimal value of pp

Letter (ASCII character): %c var%
e.g. %c pp% will embed one letter, corresponding to the

ASCII value of pp.

Number Formatting:

You can specify the minimum length of the formatted number. Just specify
the length in digits before the format specifier: %4d pp% will embed the
decimal value of pp with at least 4 characters. If the number pp has less
than 4 digits, the embedded value is prefixed with as many spaces to make
the embedded value 4 characters long. If the number pp has more than 4
digits, the resulting number will be embedded with all (more than 4) digits.

e.g.: %3d pp%, and pp is 51, will result in “ 51”
(note the space in front of “51”)

Prefixing the length with 0 will use zeros for prefixing, if necessary.
e.g.: %05d pp%, and pp is 51, will result in “00051”

Number formatting works with the d, x, and X format specifiers.

Example:

PDF slide viewer with random access to specific pages from MIDI Translator.
You can use this outgoing action in conjunction with an Incoming Action,
e.g. a MIDI controller, to display arbitrary slides.

Filename: slides/slide%02d g0%.pdf
Parameters: (empty)

(c) 2017 by Bome Software GmbH & Co. KG page 54

Bome MIDI Translator: User's Manual 9 Actions

Now you can define which PDF file to show, based on the variable g0. If g0
is 0, the PDF viewer is called like this:

PDFViewer slides/slide00.pdf

If, later on, g0 is 13 (by way of Rules or the Incoming Action), it is called
like this:

PDFViewer slides/slide13.pdf

So, by creating single PDF files for every page/slide, you can control exactly
which slide to show with the PDF viewer (and jump to particular pages,
etc.).

(c) 2017 by Bome Software GmbH & Co. KG page 55

Bome MIDI Translator: User's Manual 9 Actions

9.8 Serial Port
With the Serial Port trigger and action, you can trigger your translators from
arbitrary data received on a serial port, and send any data you like on a
serial port.

So you can easily implement a Serial-to-MIDI converter, and vice versa,
with just a few translators, or convert the serial data flow on the fly, or
control devices which only have a serial port.

9.8.1 Data Representation and Format
The serial port actions let you enter the incoming or outgoing serial port
data string in three different ways.

ASCII Text
In ASCII mode, you can enter arbitrary text into the Serial Port text field,
and it will be interpreted as a series of ASCII characters. Many terminal type
serial port devices and modems (initially) work in ASCII mode.

You should only use characters from the original ASCII type set. Special
characters and control codes can be entered by escaping them with
backslash: for ENTER, use \r\n or just \n. For entering a single backslash,
use \\. For entering an arbitrary byte, prepend the hexadecimal number
with \x. For example, to send a byte 175 ('AF' hexadecimal), use \xAF. The
hexadecimal number must have 2 digits. For entering longer binary data,
specify them byte for byte, e.g.:

\xFF\xF0Embedded Text\x00\x0A\x08\xF7

In ASCII mode, you cannot embed variables.

Data (numbers)
In this mode, you specify the serial port data as a series of bytes, separated
by a space. One byte is in the range 0 to 255. You can also specify
hexadecimal numbers by prefixing them with 0x. Local and global variables
can be embedded directly.

Example:

255 0x7F 10 20 pp g0 10

(c) 2017 by Bome Software GmbH & Co. KG page 56

Bome MIDI Translator: User's Manual 9 Actions

In the example, the first byte is specified as a decimal number 255, the
second number in hexadecimal form, which equals 127 decimal. Then two
more decimal numbers, followed by the two variables pp and g0.

For incoming serial port actions, embedded variables are set to the received
byte at that position. For outgoing serial port actions, variables in the
outgoing string are replaced by their values before being sent ot the serial
port.

Data (hexdump)
This way to specify the serial port data string is similar to Data (numbers),
but the data is entered as a series of hexadecimal bytes without a prefix.

You can embed variables by enclosing them in % signs.

Example:

Data (hexdump): F0 60 %pp% F7

This is equivalent to specifying the string like this in Data (numbers) mode:

Data (numbers): 240 96 pp 247

9.8.2 Selecting a Serial Port and Alias
In every Serial Port action, you need to specify the serial port to receive
data from, or to send it to, respectively. However, most often serial ports
have non-descriptive names like “COM12” or “/dev/cu.Bluetooth-Incoming-
Port”. Therefore, MIDI Translator enforces the use of Serial Port Aliases.
They are similar to MIDI Port Aliases, and basically just define an own name
for the port. We recommend to use the name of the connected device for
the alias name. This makes it easier to use your project on a different
computer where the actual serial port might be “COM10” and not “COM12”.

When you open a project file with unknown serial port aliases, a pop-up
dialog will prompt you to select which serial port a given port alias is
assigned to.

Consequently, to use a serial port in an incoming or outgoing action, first
use the Create button to create an alias, then check that alias in all the
serial port actions you need.

Under some circumstances, it might even make sense to create multiple
aliases for the same port.

(c) 2017 by Bome Software GmbH & Co. KG page 57

Bome MIDI Translator: User's Manual 9 Actions

To define the physical port to an alias, click the Edit button. In order to
remove an alias, use the Delete button. If the alias is used in other
translators, it will likely be recreated. Also, if you load a project file with the
deleted alias, it will be recreated.

The alias assignments are stored on a local computer. When using a project
with serial ports on a different computer, you will first need to define the
serial port aliases.

9.8.3 Configuring the Serial Port
By pressing the Configure button, you can specify the port's connection
settings.

Serial port configuration can be done on both the actual serial
ports, and on serial port aliases.
We recommend to only configure port aliases.

The port configuration is stored in the project
file so you can use different port configurations
in different projects.

Note: prior to version 1.8.2, you could only set
the configuration on serial ports and not on
serial port aliases.

Baud Rate
Use the drop-down list to use one of the usual
baud rates, or enter a custom baud rate
directly. Note that some operating systems
and/or serial port devices may not support all
baud rates. The most common rate for
terminals and the like is 115200. Physical MIDI baud rate is 31250.

Data Bits / Stop Bits / Parity
These definitions specify the physical protocol. They depend on the receiving
serial port device. Most common is 8N1, i.e. 8 data bits, parity None, and 1
stop bit.

Use as MIDI Device
By checking this option, MIDI in and out ports appear inside MIDI
Translator. See the next chapter for details.

(c) 2017 by Bome Software GmbH & Co. KG page 58

Bome MIDI Translator: User's Manual 9 Actions

9.8.4 Using a Serial Port as a MIDI Device
There are certain devices which send MIDI data over a standard serial port.
For those scenarios, you can check the option “Use as MIDI Device” in the
serial port configuration. This will create a MIDI device internal to MIDI
Translator, as a direct pass-through: any MIDI messages sent to that MIDI
OUT port will actually send it to the associated serial port. And any data
received on that serial port will also be received on the corresponding MIDI
IN port.

This function also allows you to use serial ports in the MIDI Router.

Mixed use is possible, too: even if exposed as a MIDI device, the serial port
can still be used in serial port action.

We recommend to only use this function on serial port aliases. The MIDI
port will be named like the alias.

The “Use as MIDI Device” setting on a serial port (alias) is stored in your
project file. (Prior to version 1.8.2, it was stored on the computer instead).

9.8.5 Capturing Serial Port Data
By activating the Capture checkbox next to the serial data text field, all data
received from the opened serial ports will be appended to the text field. This
allows for a convenient way to define the data string you need.

The Capture function always displays received serial port data,
not the data which is sent out by an outgoing action.

9.8.6 Incoming Serial Port
In the incoming serial port action, you define the serial port string that acts
as a trigger for the translator. The string you enter is matched anywhere in
the data string being received from the serial port, so you can match for
partial lines, single characters, and multiple lines all the same.

See above for the different ways to enter the serial data string.

For the Data modes, you can embed variables. Upon a matching serial port
string, the variables will be set to the received data byte at the given
position. As long as the incoming action does not match, the variables are
not touched.

(c) 2017 by Bome Software GmbH & Co. KG page 59

Bome MIDI Translator: User's Manual 9 Actions

Example:
Incoming Action data string in Data/hexdump format:

6E 20 %pp% 70 %ga% 5F

Now let this be a series of data bytes received on the serial port:

... 20 6E 6E 20 3A 70 51 5F 80 1A ...

As soon as the byte 5F is received (last byte of the incoming action), the
incoming action matches. The variable “pp” is set to hexadecimal 3A
(decimal 58), and the variable “ga” is set to the value hexadecimal 51
(decimal 81).

Now, in the rules and outgoing action, you can use and modify these
variables, or, for global variables, use them in different translators.

9.8.7 Outgoing Serial Port
This action is used to send a data string to a serial port.

See above for a description of the different ways to specify the data string.

For the Data modes, you can embed variables. Before the string is sent out,
the values of the variables are inserted instead of the variables. The
variables will not be changed.

(c) 2017 by Bome Software GmbH & Co. KG page 60

Bome MIDI Translator: User's Manual 9 Actions

Example:
Outgoing Action data string in Data/number format:

10 20 30 pp 67 0xFF h1 0

Now let variable pp be 56 and h1 be 126. Then this is the string to be sent
out:

decimal: 10 20 30 56 67 255 126 0
hexadecimal: 0A 14 1E 38 43 FF 7E 00

(c) 2017 by Bome Software GmbH & Co. KG page 61

Bome MIDI Translator: User's Manual 9 Actions

9.9 AppleScript

9.9.1 AppleScript Outgoing Action
You can invoke arbitrary AppleScript commands as an Outgoing Action.

Although you can edit the AppleScript action on Windows, it will
only execute on OS X.

The AppleScript code that you
enter in the Script text area will
be executed when this
Outgoing Action is triggered.

You can also define global
AppleScript handlers in the
project properties. These
handlers are available in all
AppleScript actions (see next
chapter).

Passing Variables directly to a
script

Any variables that you want to
use in the script can be passed
as parameters. In the
Parameters text field, enter all
local and global variables that
you want to read in the script.
For example, by specifying “pp,
g0” as Parameters, you will be
able to use pp and g0 directly in the AppleScript. See the screenshot above
for an example.

The Script will use copies of the variables so any changes to the
variables will not be reflected back to the MIDI Translator
engine.

(c) 2017 by Bome Software GmbH & Co. KG page 62

Bome MIDI Translator: User's Manual 9 Actions

Modifying MT Variables
From inside AppleScript code in the outgoing action, you can access global
variables directly:

setVariable(<Name>, <value>)
getVariable(<Name>)

For this to work, you must have installed MIDI Translator in the
Applications folder.

Call Outgoing AppleScript from other Outgoing Actions
The AppleScript outgoing action is internally implemented as a handler. You
can optionally give the handler a name so that it is available from other
AppleScript actions and from the global AppleScript section.

Referencing MIDI Translator in an AppleScript
The special identifier __APPLICATION_NAME__ is replaced with the
application name, i.e. “Bome MIDI Translator Pro” (or to whatever you have
renamed it). if you need to self-reference MIDI Translator application, use
that identifier rather than hard coding the name.

Example: increase iTunes volume
-- increase volume, stored in g0
set vol to getVariable("g0")
set vol to vol + 10
setVariable("g0", vol)
tell application id "com.apple.iTunes"
 set the sound volume to vol
end tell
display notification "The volume is now: " & (g0 as text)

Project Global AppleScript Section

In the Project Properties, there is a text area where you can enter free form
AppleScript handlers. These handlers can be called from your outgoing
action so that you have a space for AppleScript code that you need to run
from multiple outgoing actions.

(c) 2017 by Bome Software GmbH & Co. KG page 63

Bome MIDI Translator: User's Manual 9 Actions

Example: global handler for iTunes volume
The following text, when entered in the global AppleScript section, defines a
handler that lets you set the iTunes volume.

on setITunesVolume(vol)
 tell application id "com.apple.iTunes"
 set the sound volume to vol
 end tell
end setITunesVolume

Now from any Outgoing AppleScript action, you can call the handler
setITunesVolume(val).

Do not enter code outside of a handler in the global section. It
will be executed at arbitrary times (or not at all).

9.9.2 Control MT using External AppleScript
You can control a running instance of MIDI Translator from 3rd party
AppleScripts.

Currently, there are 2 commands available:

set variable <varname> to <value>
get variable <varname>

You can only manipulate global variables.

For external AppleScript support to work, you must have the
application installed in the Applications folder.

For example, the following script sets the global variable g0 to 123, and
then reads it back and sets an Applescript variable “asVar” to the result:

tell application "Bome MIDI Translator Pro"
set variable "g0" to 123
set asVar to get variable "g0"

end tell
log asVar

(c) 2017 by Bome Software GmbH & Co. KG page 64

Bome MIDI Translator: User's Manual 10 Rules and Variables

10 Rules and Variables

translator rules

10.1 Overview
Translators are comprised of three main sections: incoming actions,
outgoing actions, and rules. This part of the documentation covers Rules,
how to use and to be related to Variables, and what they can be used for.

Rules are basically simplified programming steps that take data from the
incoming actions, or global variables, and can affect what happens with the
translator's outgoing action. Rules use variables to pass data back and forth
between the incoming action and the outgoing action of a translator.

(c) 2017 by Bome Software GmbH & Co. KG page 65

Bome MIDI Translator: User's Manual 10 Rules and Variables

Rules are normally processed from top to bottom: the rule on the first line is
processed first, followed by the second and so on. Rules can also use Labels
and Jumps to direct programming flow. Existing rules can be moved up and
down in the rules box by first selecting the rule, then clicking the 'Up' or
'Down' buttons next to the Rules list.

Variables can either be defined in an incoming action, or through the Rules
section of a translator. Incoming actions defined with a variable as part of
the action will pass the variable on to the rules section to be processed and
potentially used as a global variable or passed on to the outgoing action.

10.2 Rule Types
There are eight types of rules in Bome MIDI Translator. Three of these rules
(Assignment, Expression and Conditional) deal directly with variables,
changing their values and operating off of conditionals determined by
existing values. Two of the rules (Jump and Label) are used for directing the
flow of the rules programming, allowing you to make 'Functions' for complex
rule sets. The two exit rules (Exit Rules and Execute, Exit Rules and Ignore)
are especially useful for conditionals, only enabling the outgoing action when
a specific condition is met. The last rule is a comment, allowing you to
document your rules in free form.

The rule types are described in detail below.

10.2.1 Assignment
Examples:

pp = 20
ga = qq

This rule type allows a straight assignment of a variable's value to a specific
number or another variable's value. The variable you wish to assign is
chosen on the left side of the equation from a drop-down box, while the
source value or variable is selected or entered on the right side. Assignment
rules are useful for assigning an input local variable to a global variable.
They can also be used for assigning a specific value to an outgoing action
depending on a conditional.

Expression

Examples:

pp = 30 + qq
h0 = 128 / ga

(c) 2017 by Bome Software GmbH & Co. KG page 66

Bome MIDI Translator: User's Manual 10 Rules and Variables

Expression rules use basic arithmetic (plus:+,minus:-,multiply:*,divide:/,
modulo: %) or binary operators (AND:&,OR:|,XOR:^, shift right: >>, shift
left: <<) to enter a value into a variable. A variable is selected from a drop-
down box on the left side of the equation, while the two variables and/or
numbers and operator are selected on the right side of the equation.
Expression rules are useful for processing basic operators on incoming
values to, for example, increase them or decrease them parametrically.

Expression Operators:

+ plus

Add the left operand to the right operand. Example:
 pp=10
 g0=pp+110

 g0 has the value 120.→
Note: variables use a signed 32-bit range, i.e. they wrap at
2147483647 and -2147483648.

- minus

Subtract the right operand from the left operand. Example:
 pp=99
 g0=pp-110

 g0 has the value -11.→
Note: variables use a signed 32-bit range, i.e. they wrap at
2147483647 and -2147483648.

* multiply

Multiply the left operand with the right operand. Example:
 pp=2 * 22

 pp has the value 44.→
Note: variables use a signed 32-bit range, i.e. multiplying
where the result exceeds 2147483647 will cause a truncated
result.

/ divide

Divide the left operand by the right operand and truncate the
decimals. Example:
 pp=10
 qq=127 / pp

 qq has the value 12→
Note: prevent a division by 0! (undefined)

% modulo

Calculate the remainder of the division of the left operand by
the right operand. Example:
 pp=10
 qq=104 % pp

 qq has the value 4→
Note: prevent modulo 0! (undefined)

& bit-wise AND

Calculate the combination of the left operand's bits AND the
right operand's bits. A given bit is set in the result when it is
set in both the left and right operand. Example:
 tt=0x98 & 15

 tt has the value 8→
Note: variables and calculations use 32-bit signed integer
numbers.

(c) 2017 by Bome Software GmbH & Co. KG page 67

Bome MIDI Translator: User's Manual 10 Rules and Variables

| bit-wise OR

Calculate the combination of the left operand's bits OR the
right operand's bits. A given bit is set in the result when it is
set in the left operand, or in the right operand, or in both.
Example:
 h0=0x90 | 3

 h0 has the value 0x93→
Note: variables and calculations use 32-bit signed integer
numbers.

^ bit-wise XOR

Calculate the XOR combination of the left operand's bits with
the right operand's bits. A given bit is set in the result when it
is either set in the left operand or in the right operand (but
not both). Example:
 h0=0x90 ^ 13

 h0 has the value 157 (0x9D)→
Note: variables and calculations use 32-bit signed integer
numbers.

>>
bit-wise shift
right

Shift the left operand's bits to the right by the number of bits
given in the right operand. Left bits are filled with 0 bits.
Example:
 ga=0x90 >> 4

 ga has the value 9→
Note: variables and calculations use 32-bit signed integer
numbers.
Note: shifting right by 1 is equivalent to dividing by 2, shifting
right by 2 divides by 4, then by 8, etc.

<<
bit-wise shift
left

Shift the left operand's bits to the left by the number of bits
given in the right operand. Right bits are filled with 0 bits.
Example:
 ga=0xB << 4

 ga has the value 0xB0→
Note: variables and calculations use 32-bit signed integer
numbers.
Note: shifting left by 1 is equivalent to multiplying with 2,
shifting left by 2 multiplies with 4, then by 8, etc.

10.2.2 Jump
Redirects the processing of the rules to a 'Label' point.

A Label name may be typed in directly, or an existing label jump destination
may be picked from the drop-down box.

Take extra care that you do not create an infinite loop!

10.2.3 Label
This is the destination point in the rules processing that you would like a
jump point to redirect to. Labels are useful for defining functions in your
rules sets.

(c) 2017 by Bome Software GmbH & Co. KG page 68

Bome MIDI Translator: User's Manual 10 Rules and Variables

10.2.4 Exit Rules and execute Outgoing Action
This is a direct action. Upon processing this rule, the Translator will
immediately stop processing the rules and execute the Translator's Outgoing
Action. These rules are commonly found coupled with Conditional rules and
Labels to create complex processing statements.

10.2.5 Exit Rules and ignore Outgoing Action
This is a direct action. This rule will immediately stop processing the rules
set, but will NOT execute the outgoing action. This is useful for making
Translators that ONLY execute when certain conditions are met.

10.2.6 Conditional
Examples:

IF pp = 10 THEN qq=11
IF gc >= xx THEN ...

Conditional rules allow you to specify that a rule will ONLY execute if certain
conditions are met. Conditional rules are constructed as follows:

IF (value/variable) (==/!=/>=/<=/>/<) (value/variable) THEN

If the preceding conditional is true, then one of the following actions is
performed:

Assignment

Expression

Jump

Skip Next Rule

Skip Next 2 Rules

Exit Rules, Execute Outgoing Action

Exit Rules, Skip Outgoing Action

(c) 2017 by Bome Software GmbH & Co. KG page 69

Bome MIDI Translator: User's Manual 10 Rules and Variables

Conditional Rule Operators:

== EQUALS (true example: IF 10 == 10 THEN)

!= DOES NOT EQUAL (true example: IF 10 != 45 THEN)

>=
GREATER THAN OR EQUAL
TO

(true example: IF 86 >= 45 THEN)

<= LESS THAN OR EQUAL TO (true example: IF 34 <= 34 THEN)

> GREATER THAN (true example: IF 10 > 4 THEN)

< LESS THAN (true example: IF 24 < 80 THEN)

10.3 Types of Variables
There are two main types of variables in Bome MIDI Translator: Local
variables and Global variables. Variables can be set either with incoming
actions or with rules.

The life time of a Local Variable is bound to an incoming event. A Global
variable, however, will retain it's value as long as the project in Bome MIDI
Translator is running.

10.3.1 Local Variables
Local Variables are defined by character combinations in the following
range:
oo-xx (example: pp, ss, ww, etc...).

Local variables retain their value as long as a given input event is being
processed. Once an incoming event processing is done, the local variable is
undefined. Because MIDI Translator can execute multiple incoming events
simultaneously, there are then multiple sets of the same local variable. Each
simulatenous translator will work on the local variable that is assigned to the
respective incoming event. So local variables are an easy way to ensure that
incoming events do not mess up processing of other simultaneous events
which use the same local variables.

Local variables are normally the most commonly used variables, and are
useful for holding temporary values. Local variables can be used in incoming
actions to pass, for example, a continuous controller value to the Rules
section of a Translator, where it can then be processed and resent to the
outgoing action.

Note that Local Variables are not pre-initialized: if you don't define them in
the Incoming Action, and you don't set them to a value in a Rule, a Local
Variable can have any (random) value.

(c) 2017 by Bome Software GmbH & Co. KG page 70

Bome MIDI Translator: User's Manual 10 Rules and Variables

10.3.2 Global Variables
Global variables are defined by two-character combinations in the following
ranges:
ga-gz/g0-g9, ha-hz/h0-h9, ..., na...n9, and ya-y9, za-z9

Variable names where both letters are the same are local variables.

Examples for global variables: h4, kd, j0, nb, zg, etc

Global variables retain their value for the life time of the project. Global
variables are useful for passing information between translators, and for
remembering state.

One common use of global variables is to create a 'Shift' button on your
controller, which can then control which translators are processed depending
on the state of the shift control.

Another common use of global variables is to 'Hold' a controller's value while
a timer is running, allowing you to re-send that value when the timer is
done processing.

At Project start, all global variables are initialized with 0.

10.4 Using Rules and Variables
One of the most useful way to use Rules and Variables in your Translator is
the translation of a velocity or cc value to another value. Variables may be
utilized in the mapping of an incoming MIDI action in a translator by
changing the last value to a variable setting instead of a static value.
Variables may be used in both incoming and outgoing translator actions,
allowing values input into translators to be processed, and then sent on to
the outgoing MIDI port while retaining full routing flexibility.

(c) 2017 by Bome Software GmbH & Co. KG page 71

Bome MIDI Translator: User's Manual 11 Settings

11 Settings
Settings for Bome MIDI Translator allow the end user to modify the general
behavior of the program.

Setup options for Bome MIDI Translator are divided up into these general
categories:

Startup

Appearance

Confirm

Virtual MIDI Ports

Serial Ports

Export/Import

Reset

11.1 Startup Options
The Startup section deals with how Bome MIDI Translator initially starts.
Having the program start up automatically with the operating system can be
useful once you have all your Translators created.

Start Minimized:
If checked, MIDI Translator Pro will start in minimized form, i.e. it will
not show the main window. You need to (double-)click the program
icon to show MT's window.

Show Splash Screen:
Enable or disable the showing of the program splash screen when
MIDI Translator is started.

Auto Start:
This option causes MIDI Translator to automatically start when your
computer is booted.

Only allow one instance:
If this option is checked (recommended), starting MIDI Translator Pro
while it is already running (e.g. hidden in the tray/menubar) will
instead activate that already running instance. You can also use this to
pass command line parameters to the running instance, effectively
remote controlling a running instance.

(c) 2017 by Bome Software GmbH & Co. KG page 72

Bome MIDI Translator: User's Manual 11 Settings

11.2 Appearance
The Appearance section of the settings window deals with how the program
behaves.

Show tray icon:
If enabled, a small MIDI Translator icon is visible in the tray
(Windows) or menubar (OS X). You can use it to quickly open MT's
window, or to use it instead of the main icon in task bar / dock (see
previous option).

Minimize to tray/menu bar:
If checked, and the tray/menu bar icon is visible (see previous
option), minimizing the program will “hide” it in the tray (Windows) or
menu bar (OS X). The main program icon in the task bar (Windows) or
dock (OS X) is hidden then. Double-click the tray/menubar icon or use
the icon menu to show MIDI Translator Pro again.

Notify when minimized to tray / menu bar:
If this option is checked, minimizing to tray/menu bar will pop up a
balloon window to tell you where MT Pro had been minimized to – i.e.
the tray / menu bar icon.

Suppress outgoing keystroke when focused:
If checked (default), outgoing keystrokes are only emulated if MIDI
Translator is not the currently active application. This is to prevent
accidental activation of functions in MIDI Translator.

Ignore incoming keystrokes when focused:
If checked, incoming keystrokes will not trigger corresponding
incoming actions if MIDI Translator is not the currently active
application. This is to prevent accidental activation of functions in MIDI
Translator.

11.3 Confirm
Many actions in MIDI Translator will prompt you for confirmation. They
usually come with a checkbox “do not show again”. Once disabled, you can
enable such confirmation prompts again by checking them here.

11.4 Virtual MIDI Ports
Bome MIDI Translator includes built-in virtual MIDI port drivers that enable
the end user to send to and receive from other applications. This way you
can seamlessly link up MIDI Translator as “man in the middle” between a
MIDI device and an application without using any 3rd party software. Up to
nine sets of virtual MIDI ports may be installed at any one time, allowing
expanded control and flexibility of your MIDI routing.

(c) 2017 by Bome Software GmbH & Co. KG page 73

Bome MIDI Translator: User's Manual 11 Settings

Number of Virtual Ports
In the drop-down list, simply choose how many pairs of virtual MIDI ports
you require in your processing (1 virtual MIDI port = 1 MIDI IN, 1 MIDI
OUT), select Apply and follow the on-screen hardware installation
instructions similar to the product installation covered in the Quickstart
guide.

Naming of Virtual Ports
There are two different ways for how these virtual ports appear in other
software on the same computer:

Long Names:
This is the default, port names are named using the scheme “Bome MIDI
Translator 1”.

Short Names:
When selected, the virtual ports appear as “BMT 1” in other applications.
This is particularly useful for applications which only display a small text
field for the name of a MIDI port.

11.5 Serial Port Settings
In the Serial Port settings, you can configure the serial ports and serial port
aliases. The serial port settings are stored in the project file.

(c) 2017 by Bome Software GmbH & Co. KG page 74

Bome MIDI Translator: User's Manual 11 Settings

11.6 Export/Import Settings

11.6.1 Overview
The MIDI Translator settings Export/Import feature allows a user to backup
their settings to a .bmts file to restore at a later time.

Note that Project Default Ports, Author Info, and MIDI Router connections
are saved in your project files.

11.6.2 Create .bmts file
In the Options menu, use the “Export Settings” function. It allows you to
export your settings to a .bmts file. These settings include:

Window size and position

Selected translator preset

All program settings and preferences from the settings window.

11.6.3 Manually Import .bmts file
Use the “Import Settings” function in the Options menu and specify a
previously saved .bmts file. This is particularly helpful if you want to transfer
your settings to another computer, give them to a friend, or you have to
reinstall your OS.

11.6.4 Use Command Line for Importing Settings
You can use the /settings command line switch to use a particular .bmts file
when starting MIDI Translator. You can create a small script file that
launches MT with a particular settings file (and possibly project file using the
/project switch) for quick access to a particular configuration. On Windows,
script files will be a .bat or .cmd file, on OS X, you can use shell scripts (.sh)
or Apple Scripts.

Note: when you quit MIDI Translator, it will write back the current settings
to the settings file you specified on the command line.

11.6.5 Auto-Load of .bmts File at Start-up
There is a trick to let MIDI Translator auto-load a .bmts file: rename it the
same as the app name and put it into the same folder.

(c) 2017 by Bome Software GmbH & Co. KG page 75

Bome MIDI Translator: User's Manual 11 Settings

On Windows, if the app file is “MIDI Translator.exe”, rename the settings file
to “MIDITranslator.bmts”. and copy it side-by side to the same folder. Note
that Windows will usually not show the .exe extension.

On OS X, if the app file is “Bome MIDI Translator Pro.app”, rename the
settings file to “Bome MIDI Translator Pro.bmts”. and copy it side-by side to
the same folder. Note that the Finder will usually not show the .app
extension.

This is particularly useful when running MIDI Translator from a USB thumb
drive.

11.7 Reset
This settings screen lets you reset certain settings of MIDI Translator:

11.7.1 Reset All
Clicking this button will reset all settings to their defaults.

11.7.2 Remove MIDI Aliases
This button will remove all MIDI aliases and their associations. Note that
loading a project file with stored MIDI port settings will recreate those MIDI
aliases in the project file.

(c) 2017 by Bome Software GmbH & Co. KG page 76

Bome MIDI Translator: User's Manual 12 Behind the Scenes

12 Behind the Scenes
In this chapter, the inner workings of the translation engine are explained.

12.1 Incoming Event Processing
MIDI Translator is entirely event driven: nothing happens until an event
comes in. Only when an event enters MIDI Translator's engine will it become
alive. An example for an event is a MIDI message coming in on a MIDI
INPUT port.

The engine looks at the first preset. If the preset is active (i.e. it is checked
in the preset list), it looks at the first translator in the preset. If the
translator is active and has the same Incoming Action type as the incoming
event (e.g. MIDI), it processes the Incoming Action.

Processing the Incoming Action is mainly a check to see if the event
matches the definitions in the Incoming Action, e.g. to compare the MIDI
message in the Action with the MIDI message of the event. Some Incoming
Actions may also set local or global variables (like the MIDI Incoming
Action).

If Incoming Action Processing results in a match, the Rules of this Translator
are executed (if any). The Rules can abort processing of this Translator. If
they don't, then the Outgoing Action is executed.

When the Outgoing Action is executed, the engine looks at this translator's
“Stop Processing” flag. If it is set, processing of this event is done.

In all other cases, the engine looks at the next translator and processes it
exactly in the same way as the first translator: the entire process is
repeated for every translator in the first preset, and then for all following
presets the same way it was done for the first preset.

(c) 2017 by Bome Software GmbH & Co. KG page 77

Bome MIDI Translator: User's Manual 12 Behind the Scenes

Preset is
active?

Preset is
active?

Get next PresetGet next Preset

YesYesYesYes

NoNoNoNo

Done with this
event

Done with this
event

Process Incoming
Action

Process Incoming
Action

Flowchart Incoming Event ProcessingFlowchart Incoming Event Processing

Wait for
Incoming

Event

Wait for
Incoming

Event

Template by Marc Carson, www.marccarson.com.Template by Marc Carson, www.marccarson.com.

Get First PresetGet First Preset

Get First TranslatorGet First Translator

Translator is
active?

Translator is
active?

NoNoNoNo

Yes Yes Yes Yes

No more
Presets?
No more
Presets?

No No No No
Any more

Translators?
Any more

Translators?

No No No No

Get next
Translator
Get next
Translator

YesYesYesYes

Yes Yes Yes Yes
Incoming

Action
matches
event?

Incoming
Action

matches
event?

Process RulesProcess RulesNoNoNoNo

YesYesYesYes

Skip
Outgoing
Action?

Skip
Outgoing
Action?

Execute Outgoing
Action

Execute Outgoing
Action

 YesYes YesYes

NoNoNoNo

Stop
Processing

flag?

Stop
Processing

flag?

YesYesYesYes

NoNoNoNo

12.2 Executing the Outgoing Action
Once the Incoming Action processing logic (see previous chapter)
determines that the Outgoing Action needs to be executed, the engine will
either execute the Outgoing Action directly, or enqueue the action for
asynchronous execution.

The decision if an action is executed directly or asynchronously depends on
many factors out of scope of this document, but in general fastest
processing of the engine in general is favored. For example, Outgoing

(c) 2017 by Bome Software GmbH & Co. KG page 78

Bome MIDI Translator: User's Manual 12 Behind the Scenes

Keystroke emulation takes a while to execute. So if you generate keystrokes
from a MIDI message but also do a lot of MIDI-to-MIDI translation, the
emulated keystroke would interrupt the MIDI translations until the
keystrokes are sent. For that reason, Outgoing Keystrokes are usually
enqueued for asynchronous execution.

Asynchronous execution has the advantage that it allows for much better
runtime performance. But on the other hand, it will be impossible to foresee
in which sequence Outgoing Actions are going to be executed: in the
example above, MIDI events arriving after the Outgoing Keystroke action
was enqueued are likely be processed before the Outgoing Keystroke(s) are
fully sent.

To make processing deterministic, the engine always guarantees that
outgoing actions of the same type are executed in the correct order.

12.3 Parallel Processing
MIDI Translator's engine is using advanced optimization techniques to
provide the best realtime processing performance even at heavy load and
when processing many different types of incoming events.

In particular, the engine is multi-threaded, using all processor cores on
modern multi-core processors. For example, the engine can process MIDI
events from different MIDI ports simultaneously. Some Outgoing Actions
can be executed simultaneously with other Outgoing Actions, some
Outgoing Actions are forced to be executed asynchronously in a separate
thread (see the example with Keystrokes in the previous chapter).

Multi-threading is nice for performance, but it may bring unexpected
behavior. In particular, be aware of parallel processing when using global
variables. Race conditions may occur where two events are processed
simultaneously and both change the same global variable. As a general rule,
you should use local variables whenever possible. Local variables' scope is
restricted to the particular incoming event, so it is not possible for a
concurrent event to cause problems with local variables.

(c) 2017 by Bome Software GmbH & Co. KG page 79

Bome MIDI Translator: User's Manual 13 Tips & Tricks

13 Tips & Tricks
13.1 Make Backups!
Creating and refining MIDI Translator projects can be a lot of work. Many
people only realize that when it is too late...

It cannot be said often enough: hard disks will die eventually, so regularly
save your project files on an external hard drive, USB thumb drive, or
network drive. At best, use a tool that seamlessly does that for you. OS X
users can conveniently use Time Machine for automatic backups.

13.2 Quick Access to Different Configs
If you frequently alternate between two or a couple of different project files
and would like to quickly access them, a quick&easy way is to create
multiple copies of the MIDI Translator executable app file:

1. Locate the folder where MIDI Translator is installed
(Windows, e.g.: “C:\Program Files\Bome MIDI Translator Pro”, or the
“Applications” folder on OS X)

2. Select the executable app (“MIDITranslator.exe” / “Bome MIDI
Translator Pro.app” – where .exe and .app aren't usually shown by
Explorer/Finder)

3. Copy and paste the file:
Windows: Ctrl-C and then Ctrl-V
OS X: Command-C and then Command-V

4. Rename the copy to your liking, e.g. “BMT Ableton”

The trick is that from now on, the copied app will use its own settings, i.e.
which project file to load, location of the program window, which
preferences and settings, MIDI ports, etc.

Alternatively, you can create start scripts (.bat/.cmd on Windows, .sh or
AppleScript on OS X) which use the command line switches to select a
settings file and/or project file.

(c) 2017 by Bome Software GmbH & Co. KG page 80

Bome MIDI Translator: User's Manual 13 Tips & Tricks

13.3 Running from a USB Thumb Drive
Many users need to be mobile and sometimes need to run their setup on
other computers, or have a backup solution available.

13.3.1 Windows
If you need virtual MIDI ports, we recommend to put the installer on the
thumb drive. There is no other convenient way to install the virtual ports
other than to run the installer of MIDI Translator.

Once the virtual ports are installed, however, you can run MIDI Translator
from a thumb drive. For that, copy all contents of the installation folder (e.g.
C:\Program Files\Bome MIDI Translator Pro) to the thumb drive.

13.3.2 OS X
Installing MIDI Translator on an external disk or a USB thumb drive is not a
big problem for the OS X version. Just copy the application from your
Applications folder to the thumb drive.

13.3.3 Auto-load Settings
In order to use the same settings when running from the thumb drive as
you use on your computer, do the following:

1. Run MIDI Translator, and use the “Options|Export Settings” menu to
export your current settings to a .bmts file.

2. Save the file under the same name as the MIDI Translator app, but
with the .bmts extension, e.g. “Bome MIDI Translator Pro.bmts”.

Now when you start MIDI Translator from the thumb drive, it'll find the
same-named .bmts file and use that instead of one installed on the
computer.

13.3.4 Auto-load Project
In order to auto-load a project file, use the same trick as above for the
settings file: save your project file on the thumb drive under the same name
as the app name, but keep the .bmtp file name extension. Like that, MIDI
Translator will load that project file (if it exists) when started from the
thumb drive.

(c) 2017 by Bome Software GmbH & Co. KG page 81

Bome MIDI Translator: User's Manual 13 Tips & Tricks

13.3.5 Using Multiple Configurations
As shown in the tip Quick Access to Different Configs above, just add
multiple copies of the executable app on the thumb drive and use a
matching settings file and project file to go along.

13.3.6 Using Script Files
For the more advanced user, you can create start scripts that use the
command line switches for using particular settings and project files. See
also: Use Command Line for Importing Settings.

13.4 Timer with 0ms
There is a trick to immediately execute a timer: use a one-shot timer with
0ms delay. It will be processed very efficiently, usually already in parallel to
the current event (see also Parallel Processing).

That can come in handy for a quick way to trigger a series of actions with
one or more incoming actions:

Translator 0:
Incoming: MIDI message 1
Outgoing: Timer "Execute Series", 0ms delay

Translator 1:
Incoming: MIDI message 2
Outgoing: Timer "Execute Series", 0ms delay

Translator 2:
Incoming: Timer "Execute Series"
Outgoing: out 1

Translator 3:
Incoming: Timer "Execute Series"
Outgoing: out 2

Translator 4:
Incoming: Timer "Execute Series"
Outgoing: out 3

That's an easy and fast way to trigger 3 outgoing actions with 2 incoming
actions.

13.5 Multiple Actions in one Translator
Currently, it is not possible to execute multiple Outgoing Actions from one
Translator. Here are some other ways how to achieve that:

1. The usual work-around is to duplicate the Translator and only modify
the Outgoing Action. Now there are 2 Translators with the same
Incoming Action, but with different Outgoing Actions. They will be

(c) 2017 by Bome Software GmbH & Co. KG page 82

Bome MIDI Translator: User's Manual 13 Tips & Tricks

executed one after another, because both Incoming Actions will be
triggered from the (matching) event. Note that for this to work, you
must uncheck “Stop Processing”.

2. For the MIDI outgoing action, you can use the Raw MIDI outgoing type
and concatenate multiple message directly in the MIDI message field,
e.g.: 90 40 7F 90 44 7F 90 4A 7F will play 3 notes directly.

3. For a different way to trigger multiple Outgoing Actions “at once”, see
Timer with 0ms.

13.6 Performance Optimization
For most use cases, MIDI Translator's performance will be near real time, so
there should not be the need to optimize. However, for larger projects (i.e.
100's of Presets / 1000's of Translators), it will be worthwhile to know some
optimization techniques.

13.6.1 Deactivate Presets
Every Translator is “processed” for every event when its owning Preset and
itself are active. Now for a couple hundred Translators this will not be a
problem, but you may experience a performance degradation in large
projects (also depending on processor).

One easy way to optimize your project is to make sure that you disable as
many Presets as possible. When a Preset is disabled, none of its Translators
are even looked at during processing of an event. So it's worthwhile to
group Translators that are used together into Presets and activate the
Presets as needed.

For example, let's say that the first Preset is an “Initialization” preset with
100 Translators that execute after the project was opened. Subsequently,
after initialization is fully done, every Incoming Event will walk through
those 100 initialization Translators before reaching any useful Presets.

A straight forward way to solve this is to add a last Translator to the
Initialization preset like this:

Preset 0: "Initialization"
Translator 0: init 1

Incoming: On Project Opened
Outgoing: [initialization 1]

...
Translator N: "deactivate Init preset"

Incoming: On Project Opened
Outgoing: Deactivate Preset "Initialization"

(c) 2017 by Bome Software GmbH & Co. KG page 83

Bome MIDI Translator: User's Manual 13 Tips & Tricks

This works, and will give the performance gain. However, there is a practical
problem: when working on the Project, saving it will save the “Initialization”
preset in deactivated state. So the next time you load it, it won't be called,
because it's not active. So you'd need to activate it manually every time
before you save the project to ensure it's saved in “active” state.

One way to solve this is to add another “Project Open” preset with just one
Translator. The “Project Open” preset will stay active and it will just activate
the Initialization preset. The Translators in the Initialization preset are
modified to react to “when this preset is activated”:

Preset 0: "Project Open"
Translator 0: trigger Initialization

Incoming: On Project Opened
Outgoing: Activate Preset "Initialization"

Preset 1: "Initialization"
Translator 0: init 1

Incoming: current preset is activated
Outgoing: [initialization 1]

...
Translator N: "deactivate Init preset"

Incoming: current preset is activated
Outgoing: Deactivate Preset "Initialization"

This way has another advantage: you can manually trigger the initialization
anytime during development of your project by simply activating the
“Initialization” preset.

13.6.2 Use “Stop Processing”
Another way to optimize processing is to bail out of event processing when
all relevant Translators have processed it.

The way to do that is to identify Translators which are the only ones with
this particular Incoming Action (e.g. a special MIDI message). Then check
the “Stop Processing” flag so that the event will not be further tried to be
processed by following Translators.

Of course, this also works if you have multiple Translators reacting on the
same Incoming Action: only activate “Stop Processing” for the last of the
series of Translators with the same Incoming Action.

(c) 2017 by Bome Software GmbH & Co. KG page 84

Bome MIDI Translator: User's Manual 13 Tips & Tricks

13.6.3 Avoid Redundancy
When a project grows over time, often similar things are done in two
different ways, or too much use of copy/paste caused duplicated
Translators. Also a common thing is to forget to remove Translators that
were once added for testing only. So it is a good idea to look through the
Presets with an eye for duplicated functionality.

13.6.4 Use Project/Preset Default Ports
A common problem that is hard to detect is sending MIDI messages to all
MIDI ports. When no default ports (in Project Properties / Preset Properties)
are set, an Outgoing MIDI Action will send MIDI messages to all open ports.

As long as only one MIDI port is opened and in use, that's OK. But then,
when you open multiple MIDI ports, your Outgoing Actions will suddenly
send all MIDI messages to multiple MIDI ports. Often, this remains
undetected, because the project still works. But the workload is much
higher.

The best way to do that is to group the translators into presets by MIDI
ports, and then use the Preset default ports to specify only one MIDI OUT
port per Preset as default port.

13.6.5 Use the Log Window For Development
The log window is a powerful tool for watching your Project in action. Every
now and then you should double check your project by verifying in the Log
window that the Actions are executed and processed as planned.

Turn off the Log Window when actually using MIDI Translator in action, to
ensure best performance.

(c) 2017 by Bome Software GmbH & Co. KG page 85

Bome MIDI Translator: User's Manual 14 Usage Examples

14 Usage Examples
14.1 Traktor / Ableton Live Sync
Virtual MIDI ports are available for use as unidirectional MIDI ports, so you
only need one virtual MIDI port to get MIDI data into a target application
like Traktor, and to get data back from it.

1. The first step is to select the Bome virtual port as the MIDI output in
your MIDI clock source application. In this example we're using
Traktor to act as the MIDI clock master. Select "Bome MIDI Translator
1 as the Out-Port in the program preferences.

Make sure you have the program set to transmit the clock signal by
going into the MIDI Clock category of the preferences dialog and
making sure "Send MIDI Clock" is checked. Also make sure that you
have MIDI clock playing by accessing the metronome section of the
user interface and clicking the "Play" button in the MIDI CLOCK
section.

2. The next step is to configure Bome MIDI Translator to activate the
virtual ports we wish to use coming IN, going OUT and then to link
them via the program MIDI Router. Activate the Virtual MIDI port
OUT and IN devices by going into Settings / MIDI Ports and putting a
checkmark next to each MIDI device.

(c) 2017 by Bome Software GmbH & Co. KG page 86

Bome MIDI Translator: User's Manual 14 Usage Examples

3. Next you'll need to make a link between the IN device and the OUT
device in the MIDI Router. Open the MIDI Router by clicking on
Settings / MIDI Router / Project Properties. Drag a link between Bome
MIDI Translator 1 Virtual IN and Bome MIDI Translator 1 Virtual OUT.
This will tell MIDI Translator to pass all data from Traktor thru to our
MIDI clock destination source Ableton Live.

4. The final step is to activate our MIDI clock control in our destination
application. In Live's preferences dialog window, select the MIDI Sync
category and turn Sync on for "Input: From Bome MIDI Translator 1"
to tell Live to receive MIDI clock from MIDI Translator.

(c) 2017 by Bome Software GmbH & Co. KG page 87

Bome MIDI Translator: User's Manual 15 Reference

15 Reference
15.1 Terminology

Project: A Project is a collection of Presets, grouped by a set of
common attributes such as MIDI in/out/thru settings, appearance
settings, and other common application-wide attributes.

Preset: A Preset is a collection of Translators. There are individually
named Presets, which may be switched and activated separately, as
well as an '[always active]' preset, which is perpetually active.

Translator: A Translator is an individual "rule" defining the
translation of a single 'Incoming Action' event through to a single
'Outgoing Action' event.

Name: The Name refers to the unique name given to an individual
Translator or Preset.

Incoming Action: An Incoming Action (or Incoming Trigger) is the
definition that causes an associated Translator to start. Incoming
Actions can be e.g. MIDI message, Keystroke, Timer expired, Preset
Changes, ...

Outgoing Action: An Outgoing Action is the definition of the action to
execute when a translator's Incoming Action is triggered. An Outgoing
Action event can be for example a MIDI message sent to a MIDI port,
an emulated keystroke, starting a Timer, etc.

Timer: A Timer is an internal function of Bome MIDI Translator that
will generate (repeated) events that can be processed by way of a
Translator with the Timer Incoming Action.

(c) 2017 by Bome Software GmbH & Co. KG page 88

Bome MIDI Translator: User's Manual 15 Reference

15.2 Keyboard Shortcuts
On OS X, the shortcuts are used with the Command key instead
of the Ctrl key.

Global
Shift+Esc MIDI Panic - Stops all MIDI information immediately
Ctrl-O Open Project - Opens an existing MIDI Translator

project file
Ctrl-S Save Project - Saves current project, prompting for

a name if first save
F12 Save Project As... - Saves current project as a new

file name
Ctrl-F4 Close Project - Closes current project, prompting for

save if applicable

Ctrl-N select next translator
Ctrl-M select previous translator
Shift-Ctrl-N select next preset
Shift-Ctrl-M select previous preset
F5 show or hide the Properties Sidebar
F6 / Alt-` cycle project/preset/translator/properties
F7 focus Properties Sidebar
F8 show/hide Log Window
Ctrl-F8 focus Log Window (and show if not already visible)
Ctrl-0 focus project entry
Ctrl-1 focus preset list
Ctrl-2 focus translator list
Ctrl-3 go to project properties
Ctrl-4 go to preset properties
Ctrl-5 go to translator properties / general
Ctrl-6 go to translator incoming action
Ctrl-7 go to translator rules section
Ctrl-8 go to translator outgoing action

Lists
Ctrl+C Copy to clipboard
Ctrl+V Paste from clipboard
Ctrl+X Cut to clipboard
Ctrl+D Duplicate selected preset/translator
Del/Backspace Delete currently selected object
F2 Rename currently selected object
Ctrl+A Select All objects in active viewing area
Ctrl+Up/Ctrl+Down move selected object up/down in list view

(c) 2017 by Bome Software GmbH & Co. KG page 89

Bome MIDI Translator: User's Manual 15 Reference

Translator Editor
Alt+C MIDI Capture (for MIDI as Incoming or Outgoing

Action)

(c) 2017 by Bome Software GmbH & Co. KG page 90

Bome MIDI Translator: User's Manual 15 Reference

15.3 Command Line Switches
/debug /info /error
/timedebug

debugging output

/silent no output

/nodebug /nosilent reverse the meaning

/settings <filename> use the given .bmts file instead of using the last
session's settings. At program exit, the settings
will be written to that file.

/project <filename> load .bmtp file at startup

/addproject <filename> add the presets in the given project file to the
current project. You can specify additional
/addproject commands to merge multiple project
files.

/midiin <MIDI dev> select the named MIDI device on startup for
input. You can use additional /midiin commands
to open multiple ports.

/midiout <MIDI dev> select the named MIDI device on startup for
output. You can use additional /midiout
commands to open multiple ports.

/bmidi <num ports> select the number of virtual MIDI ports you wish
MIDI Translator to use (0...5).
Windows: If currently there are more ports
installed than the given number of ports, remove
ports so that only the given number of ports
remain installed.

/bmidiAtLeast <num> Like /bmidi, but do not remove ports.

/noShow do not activate and show main window if it is
currently hidden or minimized

/close carry out the command line paramaters and then
exit (do not start the MIDI Translator window).

(c) 2017 by Bome Software GmbH & Co. KG page 91

Bome MIDI Translator: User's Manual 15 Reference

15.4 Menu Reference
File

New: close the current project and start a fresh one

Open: Open Project - Opens an existing MIDI Translator project
file

Save: Save Project - Saves current project, prompting for a name
if first save

Save As: Save Project As... - Saves current project as a new file
name

Export Project as Text…: create a human readable text file with
all your presets and translators. Note: you cannot read this file
back into MIDI Translator!

Close: Close Project - Closes current project, prompting for save if
applicable

Restart Project: initializes the loaded project as if you'd just
loaded it: clear global variables, and invoke the “project started”
event.

Project Properties: Show the Project Properties in the right
properties pane

Exit: Exit Bome MIDI Translator, prompting for save if applicable

Edit

Add Preset: Create a new preset in currently open program
template

Add Translator: Add new blank translator to currently active
preset

Cut: Remove currently selected preset or translator and place in
program clipboard

Copy: Copy currently selected preset or translator to program
clipboard

Paste: Create a new preset/translator identical to the one
previously 'cut' or 'copied' to clipboard

Delete: Remove currently selected preset or translator

Duplicate: Create an identical copy of currently selected preset or
translator

Rename: Rename currently selected preset or translator

Activate: Enable currently selected preset or translator to process
incoming and outgoing events

(c) 2017 by Bome Software GmbH & Co. KG page 92

Bome MIDI Translator: User's Manual 15 Reference

Deactivate: Disable currently selected preset or translator from
processing incoming and outgoing events

Move: Submenu - Move selected preset or translator
up/down/top/bottom

Export Preset As Text File: Save currently selected preset as a
readable text file for easy display

Properties: Show and activate properties pane for the currently
selected preset or translator

MIDI

Project Default Ports: Select the default MIDI ports for your
project

Preset Default Ports: Select the default MIDI ports for the
currently selected preset

Virtual MIDI Ports: open the settings screen to set up virtual
MIDI ports

MIDI Router: Create MIDI Thru connections between MIDI
interfaces

Rescan MIDI Ports: Rescan for open and closed MIDI ports

Close all MIDI Ports: disable all currently used MIDI ports

Open Used Ports: Open all MIDI ports which are used in the
project and close all other ports

Edit Project Port Aliases: invoke a dialog which lists all MIDI
Port Aliases which are used somehow in the project. These ports
are Project Default ports, all Preset Default Ports, MIDI ports
selected in Incoming MIDI actions and Outgoing MIDI actions, and
any ports used in the MIDI Router.

Panic: disable event processing and send All Sound Off to all open
MIDI ports

View

Log Window: Show program log window, which displays detailed
information about incoming and outgoing actions, as well as letting
you display all global system variables

Event Monitor: Display Activity Monitor on the bottom of the
program window to monitor MIDI and program activity

Properties Sidebar: show or hide the right Properties Sidebar

Project Properties: show the project properties in the right pane

Preset Properties: show the preset properties in the right pane
for the currently selected preset

(c) 2017 by Bome Software GmbH & Co. KG page 93

Bome MIDI Translator: User's Manual 15 Reference

Translator sub-menu: show Translator properties in the right
pane and focus on General options, Incoming action, Rules, or
Outgoing action.

Settings: open the settings window with general options for the
entire program. On OS X, the Settings are available from the left
application menu.

Help

Help: Show this user's manual

Get Support: go to the support web page (online)

Support forums: open the support forums in an Internet browser
(online)

Check for Updates: check online for an updated version of MIDI
Translator

Purchase MIDI Translator: Open web browser page detailing
purchase information (online)

Change License: open a window where you can enter a different
license key (full version only)

Remove License Key: remove the license key from this computer
(e.g. when you have temporarily installed MIDI Translator Pro on
somebody else's computer)

About: Show program license, version and copyright information.
On OS X, the About screen is available from the left application
menu.

(c) 2017 by Bome Software GmbH & Co. KG page 94

